Laser-assisted active microfluidic mixer

P. Shiu, G. Knopf, M. Ostojic, S. Nikumb
{"title":"Laser-assisted active microfluidic mixer","authors":"P. Shiu, G. Knopf, M. Ostojic, S. Nikumb","doi":"10.1109/ISOT.2010.5687346","DOIUrl":null,"url":null,"abstract":"Many analytical microsystems use molecular diffusion to mix small quantities of different liquids. However, this passive mixing process requires a relatively long microchannel which may impose design restrictions on the physical dimensions of the fluidic network. To shorten the length of the mixing channels, an active micromixer driven by a focused laser beam is described in this paper. The proposed solution improves the mixing rate by using low power laser radiation to heat the disparate fluids being transported through the channels. The operating principle is ba sed on the observation that the rate of molecular diffusion for non-reactive fluids increases with elevated temperatures. Preliminary experiments on a Y-channel micromixer were conducted using a 1mW, 670nm laser. The laser beam was focused on the microchannel using a 100mm focal length objective lens. The laser-assisted mixing of the test fluids showed a 36.4% increase in the average diffusion coefficient value with 1 to 10μL/min flow rates. The maximum percentage difference of diffusion distances had increased by approximately 7.85% over the non-laser-assisted conditions.","PeriodicalId":91154,"journal":{"name":"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)","volume":"59 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOT.2010.5687346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many analytical microsystems use molecular diffusion to mix small quantities of different liquids. However, this passive mixing process requires a relatively long microchannel which may impose design restrictions on the physical dimensions of the fluidic network. To shorten the length of the mixing channels, an active micromixer driven by a focused laser beam is described in this paper. The proposed solution improves the mixing rate by using low power laser radiation to heat the disparate fluids being transported through the channels. The operating principle is ba sed on the observation that the rate of molecular diffusion for non-reactive fluids increases with elevated temperatures. Preliminary experiments on a Y-channel micromixer were conducted using a 1mW, 670nm laser. The laser beam was focused on the microchannel using a 100mm focal length objective lens. The laser-assisted mixing of the test fluids showed a 36.4% increase in the average diffusion coefficient value with 1 to 10μL/min flow rates. The maximum percentage difference of diffusion distances had increased by approximately 7.85% over the non-laser-assisted conditions.
激光辅助主动微流控混合器
许多分析微系统使用分子扩散来混合少量不同的液体。然而,这种被动混合过程需要一个相对较长的微通道,这可能会对流体网络的物理尺寸施加设计限制。为了缩短混合通道的长度,本文介绍了一种由聚焦激光束驱动的有源微混合器。提出的解决方案通过低功率激光辐射加热通过通道输送的不同流体来提高混合速率。其工作原理是基于对非反应性流体的分子扩散速率随温度升高而增加的观察。利用1mW, 670nm激光对y通道微混频器进行了初步实验。利用100mm焦距物镜将激光束聚焦在微通道上。在1 ~ 10μL/min的流量范围内,激光辅助混合实验流体的平均扩散系数提高了36.4%。与非激光辅助条件相比,扩散距离的最大百分比差增加了约7.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信