A Lévy risk model with ratcheting and barrier dividend strategies

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
Hui Gao, C. Yin
{"title":"A Lévy risk model with ratcheting and barrier dividend strategies","authors":"Hui Gao, C. Yin","doi":"10.3934/mfc.2022025","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The expected present value of dividends is one of the classical stability criteria in actuarial risk theory. In this paper, we consider the two-layer <inline-formula><tex-math id=\"M1\">\\begin{document}$ (a, b) $\\end{document}</tex-math></inline-formula> dividend strategy when the risk process is modeled by a spectrally negative Lévy process, such a strategy has an increasing dividend rate when the surplus exceeds level <inline-formula><tex-math id=\"M2\">\\begin{document}$ a>0 $\\end{document}</tex-math></inline-formula>, and all of the excess over <inline-formula><tex-math id=\"M3\">\\begin{document}$ b>a $\\end{document}</tex-math></inline-formula> as lump sum dividend payments. Using fluctuation identities and scale functions, we obtain explicit formulas for the expected net present value of dividends until ruin and the Laplace transform of the time to ruin. Finally, numerical illustrations are present to show the impacts of parameters on the expected net present value.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

The expected present value of dividends is one of the classical stability criteria in actuarial risk theory. In this paper, we consider the two-layer \begin{document}$ (a, b) $\end{document} dividend strategy when the risk process is modeled by a spectrally negative Lévy process, such a strategy has an increasing dividend rate when the surplus exceeds level \begin{document}$ a>0 $\end{document}, and all of the excess over \begin{document}$ b>a $\end{document} as lump sum dividend payments. Using fluctuation identities and scale functions, we obtain explicit formulas for the expected net present value of dividends until ruin and the Laplace transform of the time to ruin. Finally, numerical illustrations are present to show the impacts of parameters on the expected net present value.

具有棘轮和壁垒红利策略的lsamy风险模型
The expected present value of dividends is one of the classical stability criteria in actuarial risk theory. In this paper, we consider the two-layer \begin{document}$ (a, b) $\end{document} dividend strategy when the risk process is modeled by a spectrally negative Lévy process, such a strategy has an increasing dividend rate when the surplus exceeds level \begin{document}$ a>0 $\end{document}, and all of the excess over \begin{document}$ b>a $\end{document} as lump sum dividend payments. Using fluctuation identities and scale functions, we obtain explicit formulas for the expected net present value of dividends until ruin and the Laplace transform of the time to ruin. Finally, numerical illustrations are present to show the impacts of parameters on the expected net present value.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信