J. R. van der Merwe, Iñigo Cortés, F. Garzia, A. Rügamer, W. Felber
{"title":"Multi-Parameter Adaptive Notch Filter (MPANF) for Enhanced Interference Mitigation","authors":"J. R. van der Merwe, Iñigo Cortés, F. Garzia, A. Rügamer, W. Felber","doi":"10.33012/navi.570","DOIUrl":null,"url":null,"abstract":"Interference signals degrade global navigation satellite system (GNSS) per - formance and must be mitigated. Chirp signals can be mitigated with an adaptive notch filter (ANF), but the dynamic behavior limits performance. An ANF determines the instantaneous frequency and removes interference with a notch filter. However, there are several limitations. In this article, we propose a multi-parameter adaptive notch filter (MPANF) approach that sig - nificantly enhances conventional ANFs. First, it uses an loop-bandwidth control algorithm (LBCA) to alter the loop bandwidth of an frequency-locked loop (FLL)-based adaptation algorithm to facilitate superior tracking agility-to-precision trade-off. Second, it dynamically adjusts the notch depth to switch on interference mitigation or pass the signal through. Third, it modifies the notch width to accommodate tracking stability and optimize interference signal suppression to GNSS signal removal. The presented MPANF exhibits superior performance against chirp signals, including faster response to jump discontinuities.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":"99 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33012/navi.570","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 3
Abstract
Interference signals degrade global navigation satellite system (GNSS) per - formance and must be mitigated. Chirp signals can be mitigated with an adaptive notch filter (ANF), but the dynamic behavior limits performance. An ANF determines the instantaneous frequency and removes interference with a notch filter. However, there are several limitations. In this article, we propose a multi-parameter adaptive notch filter (MPANF) approach that sig - nificantly enhances conventional ANFs. First, it uses an loop-bandwidth control algorithm (LBCA) to alter the loop bandwidth of an frequency-locked loop (FLL)-based adaptation algorithm to facilitate superior tracking agility-to-precision trade-off. Second, it dynamically adjusts the notch depth to switch on interference mitigation or pass the signal through. Third, it modifies the notch width to accommodate tracking stability and optimize interference signal suppression to GNSS signal removal. The presented MPANF exhibits superior performance against chirp signals, including faster response to jump discontinuities.
期刊介绍:
NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.