Auto-Scaling Provision Basing on Workload Prediction in the Virtualized Data Center

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Danqing Feng, Zhibo Wu, Decheng Zuo, Zhan Zhang
{"title":"Auto-Scaling Provision Basing on Workload Prediction in the Virtualized Data Center","authors":"Danqing Feng, Zhibo Wu, Decheng Zuo, Zhan Zhang","doi":"10.4018/ijghpc.2020010104","DOIUrl":null,"url":null,"abstract":"WiththedevelopmentintheClouddatacenters,thepurposeoftheefficientresourceallocationis tomeetthedemandoftheusersinstantlywiththeminimumrentcost.Thus,theelasticresource allocationstrategyisusuallycombinedwiththepredictiontechnology.Thisarticleproposesanovel predictmethodcombinationforecasttechnique,includingbothexponentialsmoothing(ES)andautoregressiveandpolynomialfitting(PF)model.Theaimofcombinationpredictionistoachievean efficientforecasttechniqueaccordingtotheperiodicandrandomfeatureoftheworkloadandmeet theapplicationservicelevelagreement(SLA)withtheminimumcost.Moreover,theESprediction withPSOalgorithmgivesafine-grainedscalingupanddowntheresourcescombiningtheheuristic algorithminthefuture.APWPwouldsolvetheperiodicalorhybridfluctuationoftheworkloadin theclouddatacenters.Finally,experimentsimprovethatthecombinedpredictionmodelmeetsthe SLAwiththebetterprecisionaccuracywiththeminimumrentingcost. KeyWoRDS ES, PF, Prediction, Provisioning, Scaling, SLA","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"76 1","pages":"53-69"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.2020010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

WiththedevelopmentintheClouddatacenters,thepurposeoftheefficientresourceallocationis tomeetthedemandoftheusersinstantlywiththeminimumrentcost.Thus,theelasticresource allocationstrategyisusuallycombinedwiththepredictiontechnology.Thisarticleproposesanovel predictmethodcombinationforecasttechnique,includingbothexponentialsmoothing(ES)andautoregressiveandpolynomialfitting(PF)model.Theaimofcombinationpredictionistoachievean efficientforecasttechniqueaccordingtotheperiodicandrandomfeatureoftheworkloadandmeet theapplicationservicelevelagreement(SLA)withtheminimumcost.Moreover,theESprediction withPSOalgorithmgivesafine-grainedscalingupanddowntheresourcescombiningtheheuristic algorithminthefuture.APWPwouldsolvetheperiodicalorhybridfluctuationoftheworkloadin theclouddatacenters.Finally,experimentsimprovethatthecombinedpredictionmodelmeetsthe SLAwiththebetterprecisionaccuracywiththeminimumrentingcost. KeyWoRDS ES, PF, Prediction, Provisioning, Scaling, SLA
虚拟化数据中心中基于工作负载预测的自动伸缩发放
WiththedevelopmentintheClouddatacenters,thepurposeoftheefficientresourceallocationis tomeetthedemandoftheusersinstantlywiththeminimumrentcost。Thus,theelasticresource allocationstrategyisusuallycombinedwiththepredictiontechnology。Thisarticleproposesanovel predictmethodcombinationforecasttechnique、includingbothexponentialsmoothing(ES)andautoregressiveandpolynomialfitting(PF)modelTheaimofcombinationpredictionistoachievean efficientforecasttechniqueaccordingtotheperiodicandrandomfeatureoftheworkloadandmeet theapplicationservicelevelagreement(SLA)withtheminimumcost。Moreover,theESprediction withPSOalgorithmgivesafine-grainedscalingupanddowntheresourcescombiningtheheuristic algorithminthefuture。APWPwouldsolvetheperiodicalorhybridfluctuationoftheworkloadin theclouddatacenters。Finally,experimentsimprovethatthecombinedpredictionmodelmeetsthe SLAwiththebetterprecisionaccuracywiththeminimumrentingcost。关键词ES, PF,预测,预置,缩放,SLA
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信