{"title":"Study on Earthquake-Induced Sloshing Waves in Moraine-Dammed Lakes","authors":"Cong Zhang, L. Yao","doi":"10.1142/s1793431122500014","DOIUrl":null,"url":null,"abstract":"Large surface water waves can be triggered in moraine-dammed lakes during earthquakes and may lead to the overtopping failure of moraine dams. In the earthquake-prone Himalayas, there are thousands of moraine-dammed lakes; their outburst may lead to catastrophic disasters (e.g. floods and debris flow), posing severe threats to humans and infrastructures downstream. This paper experimentally studied earthquake-induced water waves (EWWs) in moraine-dammed lakes and examined the effects of several factors (e.g. water depth, earthquake parameters, and uneven lake basin). The experimental results suggest that the EWWs positively correlate to the earthquake wave, and the maximum height of the EWWs increases by 10%–15% when the effect of the uneven lake basin is considered. Based on the experiment data, we derived a calculation equation to estimate the maximum amplitude of EWWs considering the basin effect, and proposed a fast risk assessment method for moraine lakes due to overtopping EWWs. Finally, based on the method, we assessed the failure risk of the moraine lakes located in the Gyirong river basin where the China–Nepal corridor crosses. The study broadens understandings of the risk source of moraine-dammed lakes.","PeriodicalId":50213,"journal":{"name":"Journal of Earthquake and Tsunami","volume":"6 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earthquake and Tsunami","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1142/s1793431122500014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Large surface water waves can be triggered in moraine-dammed lakes during earthquakes and may lead to the overtopping failure of moraine dams. In the earthquake-prone Himalayas, there are thousands of moraine-dammed lakes; their outburst may lead to catastrophic disasters (e.g. floods and debris flow), posing severe threats to humans and infrastructures downstream. This paper experimentally studied earthquake-induced water waves (EWWs) in moraine-dammed lakes and examined the effects of several factors (e.g. water depth, earthquake parameters, and uneven lake basin). The experimental results suggest that the EWWs positively correlate to the earthquake wave, and the maximum height of the EWWs increases by 10%–15% when the effect of the uneven lake basin is considered. Based on the experiment data, we derived a calculation equation to estimate the maximum amplitude of EWWs considering the basin effect, and proposed a fast risk assessment method for moraine lakes due to overtopping EWWs. Finally, based on the method, we assessed the failure risk of the moraine lakes located in the Gyirong river basin where the China–Nepal corridor crosses. The study broadens understandings of the risk source of moraine-dammed lakes.
期刊介绍:
Journal of Earthquake and Tsunami provides a common forum for scientists and engineers working in the areas of earthquakes and tsunamis to communicate and interact with one another and thereby enhance the opportunities for such cross-fertilization of ideas. The Journal publishes original papers pertaining to state-of-the-art research and development in Geological and Seismological Setting; Ground Motion, Site and Building Response; Tsunami Generation, Propagation, Damage and Mitigation, as well as Education and Risk Management following an earthquake or a tsunami.
We welcome papers in the following categories:
Geological and Seismological Aspects
Tectonics: (Geology - earth processes)
Fault processes and earthquake generation: seismology (earthquake processes)
Earthquake wave propagation: geophysics
Remote sensing
Earthquake Engineering
Geotechnical hazards and response
Effects on buildings and structures
Risk analysis and management
Retrofitting and remediation
Education and awareness
Material Behaviour
Soil
Reinforced concrete
Steel
Tsunamis
Tsunamigenic sources
Tsunami propagation: Physical oceanography
Run-up and damage: wave hydraulics.