Task-Driven CT Image Quality Optimization for Low-Contrast Lesion Detectability with Tunable Neural Networks.

IF 0.2 4区 社会学 0 HUMANITIES, MULTIDISCIPLINARY
EIRE-IRELAND Pub Date : 2023-02-01 Epub Date: 2023-04-07 DOI:10.1117/12.2653936
Matthew Tivnan, Tzu-Cheng Lee, Ruoqiao Zhang, Kirsten Boedeker, Liang Cai, Jeremias Sulam, J Webster Stayman
{"title":"Task-Driven CT Image Quality Optimization for Low-Contrast Lesion Detectability with Tunable Neural Networks.","authors":"Matthew Tivnan, Tzu-Cheng Lee, Ruoqiao Zhang, Kirsten Boedeker, Liang Cai, Jeremias Sulam, J Webster Stayman","doi":"10.1117/12.2653936","DOIUrl":null,"url":null,"abstract":"<p><p>Low-contrast lesions are difficult to detect in noisy low-dose CT images. Improving CT image quality for this detection task has the potential to improve diagnostic accuracy and patient outcomes. In this work, we use tunable neural networks for CT image restoration with a hyperparameter to control the variance/bias tradeoff. We use clinical images from a super-high-resolution normal-dose CT scan to synthesize low-contrast low-dose CT images for supervised training of deep learning CT reconstruction models. Those models are trained using with multiple noise realizations so that variance and bias can be penalized separately. We use a training loss function with one hyperparameter called the denoising level, which controls the variance/bias tradeoff. Finally, we evaluate the CT image quality to find the optimal denoising level for low-contrast lesion detectability. We evaluate performance using a shallow neural network model classification model to represent a suboptimal image observer. Our results indicate that the optimal networks for low-contrast lesion detectability are those that prioritize bias reduction rather than mean-squared error, which demonstrates the potential clinical benefit of our proposed tunable neural networks.</p>","PeriodicalId":43507,"journal":{"name":"EIRE-IRELAND","volume":"54 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EIRE-IRELAND","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/12.2653936","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/7 0:00:00","PubModel":"Epub","JCR":"0","JCRName":"HUMANITIES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low-contrast lesions are difficult to detect in noisy low-dose CT images. Improving CT image quality for this detection task has the potential to improve diagnostic accuracy and patient outcomes. In this work, we use tunable neural networks for CT image restoration with a hyperparameter to control the variance/bias tradeoff. We use clinical images from a super-high-resolution normal-dose CT scan to synthesize low-contrast low-dose CT images for supervised training of deep learning CT reconstruction models. Those models are trained using with multiple noise realizations so that variance and bias can be penalized separately. We use a training loss function with one hyperparameter called the denoising level, which controls the variance/bias tradeoff. Finally, we evaluate the CT image quality to find the optimal denoising level for low-contrast lesion detectability. We evaluate performance using a shallow neural network model classification model to represent a suboptimal image observer. Our results indicate that the optimal networks for low-contrast lesion detectability are those that prioritize bias reduction rather than mean-squared error, which demonstrates the potential clinical benefit of our proposed tunable neural networks.

利用可调神经网络优化低对比度病变检测能力的任务驱动 CT 图像质量。
低对比度病变很难在嘈杂的低剂量 CT 图像中检测出来。在这项检测任务中,提高 CT 图像质量有可能提高诊断准确性和改善患者预后。在这项工作中,我们使用可调神经网络进行 CT 图像修复,并使用超参数来控制方差/偏差的权衡。我们使用超高分辨率正常剂量 CT 扫描的临床图像合成低对比度低剂量 CT 图像,用于深度学习 CT 重建模型的监督训练。这些模型的训练使用多种噪声实现,因此可以分别对方差和偏差进行惩罚。我们使用的训练损失函数有一个超参数,称为去噪水平,它可以控制方差/偏差的权衡。最后,我们对 CT 图像质量进行评估,以找到低对比度病变检测的最佳去噪水平。我们使用浅层神经网络模型分类模型来评估性能,以表示次优图像观察者。我们的结果表明,低对比度病变可探测性的最佳网络是那些优先考虑减少偏差而不是均方误差的网络,这表明我们提出的可调神经网络具有潜在的临床优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EIRE-IRELAND
EIRE-IRELAND HUMANITIES, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
0
期刊介绍: An interdisciplinary scholarly journal of international repute, Éire Ireland is the leading forum in the flourishing field of Irish Studies. Since 1966, Éire-Ireland has published a wide range of imaginative work and scholarly articles from all areas of the arts, humanities, and social sciences relating to Ireland and Irish America.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信