Machine Learning and Return Predictability Across Firms, Time and Portfolios

Fahiz Baba Yara
{"title":"Machine Learning and Return Predictability Across Firms, Time and Portfolios","authors":"Fahiz Baba Yara","doi":"10.2139/ssrn.3696533","DOIUrl":null,"url":null,"abstract":"Previous research finds that machine learning methods predict short-term return variation in the cross-section of stocks, even when these methods do not impose strict economic restrictions. However, without such restrictions, the models' predictions fail to generalize in a number of important ways, such as predicting time-series variation in returns to the market portfolio and long-short characteristic sorted portfolios. I show that this shortfall can be remedied by imposing restrictions, that reflect findings in the financial economics literature, in the architectural design of a neural network model and provide recommendations for using machine learning methods in asset pricing. Additionally, I study return predictability over multiple future horizons, thus shedding light on the dynamics of intermediate and long-run conditional expected returns.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3696533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Previous research finds that machine learning methods predict short-term return variation in the cross-section of stocks, even when these methods do not impose strict economic restrictions. However, without such restrictions, the models' predictions fail to generalize in a number of important ways, such as predicting time-series variation in returns to the market portfolio and long-short characteristic sorted portfolios. I show that this shortfall can be remedied by imposing restrictions, that reflect findings in the financial economics literature, in the architectural design of a neural network model and provide recommendations for using machine learning methods in asset pricing. Additionally, I study return predictability over multiple future horizons, thus shedding light on the dynamics of intermediate and long-run conditional expected returns.
机器学习与跨公司、跨时间、跨投资组合的回报可预测性
先前的研究发现,即使这些方法没有施加严格的经济限制,机器学习方法也可以预测股票横截面的短期回报变化。然而,如果没有这些限制,模型的预测在许多重要方面都不能推广,例如预测市场投资组合回报的时间序列变化和多空特征排序投资组合。我表明,这种不足可以通过在神经网络模型的架构设计中施加限制来弥补,这些限制反映了金融经济学文献中的发现,并提供了在资产定价中使用机器学习方法的建议。此外,我研究了多个未来视野的回报可预测性,从而揭示了中期和长期条件预期回报的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信