{"title":"Classical Properties on Conformable Fractional Calculus","authors":"M Musraini, R. Efendi, Endang Lily, Ponco Hidayah","doi":"10.11648/J.PAMJ.20190805.11","DOIUrl":null,"url":null,"abstract":"Recently, a definition of fractional which refers to classical calculus form called conformable fractional calculus has been introduced. The main idea of the concept of conformable fractional calculus is how to determine the derivative and integral with fractional order either rational numbers or real numbers. One of the most popular definitions of conformable fractional calculus is defined by Katugampola which is used in this study. This definition satisfies in some respects of classical calculus involved conformable fractional derivative and conformable fractional integral. In the branch of conformable fractional derivatives, some of the additional results such as analysis of fractional derivative in quotient property, product property and Rolle theorem are given. An application on classical calculus such as determining monotonicity of function is also given. Then, in the case of fractional integral, this definition showed that the fractional derivative and the fractional integral are inverses of each other. Some of the classical integral properties are also satisfied on conformable fractional integral. Additionally, this study also has shown that fractional integral acts as a limit of a sum. After that, comparison properties on fractional integral are provided. Finally, the mean value theorem and the second mean value theorem are also applicable for fractional integral.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":"22 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20190805.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
Recently, a definition of fractional which refers to classical calculus form called conformable fractional calculus has been introduced. The main idea of the concept of conformable fractional calculus is how to determine the derivative and integral with fractional order either rational numbers or real numbers. One of the most popular definitions of conformable fractional calculus is defined by Katugampola which is used in this study. This definition satisfies in some respects of classical calculus involved conformable fractional derivative and conformable fractional integral. In the branch of conformable fractional derivatives, some of the additional results such as analysis of fractional derivative in quotient property, product property and Rolle theorem are given. An application on classical calculus such as determining monotonicity of function is also given. Then, in the case of fractional integral, this definition showed that the fractional derivative and the fractional integral are inverses of each other. Some of the classical integral properties are also satisfied on conformable fractional integral. Additionally, this study also has shown that fractional integral acts as a limit of a sum. After that, comparison properties on fractional integral are provided. Finally, the mean value theorem and the second mean value theorem are also applicable for fractional integral.
期刊介绍:
The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.