{"title":"Subcritical Nonlocal Problems with Mixed Boundary Conditions","authors":"Giovanni Molica Bisci, A. Ortega, L. Vilasi","doi":"10.1142/s166436072350011x","DOIUrl":null,"url":null,"abstract":"In this paper, by variational and topological arguments based on linking and $\\nabla$-theorems, we prove the existence of multiple solutions for the following nonlocal problem with mixed Dirichlet-Neumann boundary data, $$ \\left\\{ \\begin{array}{lcl} (-\\Delta)^su=\\lambda u+f(x,u)&&\\text{in } \\Omega, \\\\[2pt] \\mkern+39mu u=0&&\\text{on } \\Sigma_{\\mathcal{D}}, \\\\[2pt] \\mkern+26mu \\displaystyle \\frac{\\partial u}{\\partial \\nu}=0&&\\text{on } \\Sigma_{\\mathcal{N}}, \\end{array} \\right. $$ where $(-\\Delta)^s$, $s\\in (1/2,1)$, is the spectral fractional Laplacian operator, $\\Omega\\subset\\mathbb{R}^N$, $N>2s$, is a smooth bounded domain, $\\lambda>0$ is a real parameter, $\\nu$ is the outward normal to $\\partial\\Omega$, $\\Sigma_{\\mathcal{D}}$, $\\Sigma_{\\mathcal{N}}$ are smooth $(N-1)$-dimensional submanifolds of $\\partial\\Omega$ such that $\\Sigma_{\\mathcal{D}}\\cup\\Sigma_{\\mathcal{N}}=\\partial\\Omega$, $\\Sigma_{\\mathcal{D}}\\cap\\Sigma_{\\mathcal{N}}=\\emptyset$ and $\\Sigma_{\\mathcal{D}}\\cap\\overline{\\Sigma}_{\\mathcal{N}}=\\Gamma$ is a smooth $(N-2)$-dimensional submanifold of $\\partial\\Omega$.","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":"20 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s166436072350011x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, by variational and topological arguments based on linking and $\nabla$-theorems, we prove the existence of multiple solutions for the following nonlocal problem with mixed Dirichlet-Neumann boundary data, $$ \left\{ \begin{array}{lcl} (-\Delta)^su=\lambda u+f(x,u)&&\text{in } \Omega, \\[2pt] \mkern+39mu u=0&&\text{on } \Sigma_{\mathcal{D}}, \\[2pt] \mkern+26mu \displaystyle \frac{\partial u}{\partial \nu}=0&&\text{on } \Sigma_{\mathcal{N}}, \end{array} \right. $$ where $(-\Delta)^s$, $s\in (1/2,1)$, is the spectral fractional Laplacian operator, $\Omega\subset\mathbb{R}^N$, $N>2s$, is a smooth bounded domain, $\lambda>0$ is a real parameter, $\nu$ is the outward normal to $\partial\Omega$, $\Sigma_{\mathcal{D}}$, $\Sigma_{\mathcal{N}}$ are smooth $(N-1)$-dimensional submanifolds of $\partial\Omega$ such that $\Sigma_{\mathcal{D}}\cup\Sigma_{\mathcal{N}}=\partial\Omega$, $\Sigma_{\mathcal{D}}\cap\Sigma_{\mathcal{N}}=\emptyset$ and $\Sigma_{\mathcal{D}}\cap\overline{\Sigma}_{\mathcal{N}}=\Gamma$ is a smooth $(N-2)$-dimensional submanifold of $\partial\Omega$.
期刊介绍:
The Bulletin of Mathematical Sciences, a peer-reviewed, open access journal, will publish original research work of highest quality and of broad interest in all branches of mathematical sciences. The Bulletin will publish well-written expository articles (40-50 pages) of exceptional value giving the latest state of the art on a specific topic, and short articles (up to 15 pages) containing significant results of wider interest. Most of the expository articles will be invited.
The Bulletin of Mathematical Sciences is launched by King Abdulaziz University, Jeddah, Saudi Arabia.