{"title":"Weakly Supervised Image Classification Through Noise Regularization","authors":"Mengying Hu, Hu Han, S. Shan, Xilin Chen","doi":"10.1109/CVPR.2019.01178","DOIUrl":null,"url":null,"abstract":"Weakly supervised learning is an essential problem in computer vision tasks, such as image classification, object recognition, etc., because it is expected to work in the scenarios where a large dataset with clean labels is not available. While there are a number of studies on weakly supervised image classification, they usually limited to either single-label or multi-label scenarios. In this work, we propose an effective approach for weakly supervised image classification utilizing massive noisy labeled data with only a small set of clean labels (e.g., 5%). The proposed approach consists of a clean net and a residual net, which aim to learn a mapping from feature space to clean label space and a residual mapping from feature space to the residual between clean labels and noisy labels, respectively, in a multi-task learning manner. Thus, the residual net works as a regularization term to improve the clean net training. We evaluate the proposed approach on two multi-label datasets (OpenImage and MS COCO2014) and a single-label dataset (Clothing1M). Experimental results show that the proposed approach outperforms the state-of-the-art methods, and generalizes well to both single-label and multi-label scenarios.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"59 1","pages":"11509-11517"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.01178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Weakly supervised learning is an essential problem in computer vision tasks, such as image classification, object recognition, etc., because it is expected to work in the scenarios where a large dataset with clean labels is not available. While there are a number of studies on weakly supervised image classification, they usually limited to either single-label or multi-label scenarios. In this work, we propose an effective approach for weakly supervised image classification utilizing massive noisy labeled data with only a small set of clean labels (e.g., 5%). The proposed approach consists of a clean net and a residual net, which aim to learn a mapping from feature space to clean label space and a residual mapping from feature space to the residual between clean labels and noisy labels, respectively, in a multi-task learning manner. Thus, the residual net works as a regularization term to improve the clean net training. We evaluate the proposed approach on two multi-label datasets (OpenImage and MS COCO2014) and a single-label dataset (Clothing1M). Experimental results show that the proposed approach outperforms the state-of-the-art methods, and generalizes well to both single-label and multi-label scenarios.