Estimation and Inference by Stochastic Optimization: Three Examples

Jean-Jacques Forneron, Serena Ng
{"title":"Estimation and Inference by Stochastic Optimization: Three Examples","authors":"Jean-Jacques Forneron, Serena Ng","doi":"10.1257/PANDP.20211038","DOIUrl":null,"url":null,"abstract":"This paper illustrates two algorithms designed in Forneron & Ng (2020): the resampled Newton-Raphson (rNR) and resampled quasi-Newton (rqN) algorithms which speed-up estimation and bootstrap inference for structural models. An empirical application to BLP shows that computation time decreases from nearly 5 hours with the standard bootstrap to just over 1 hour with rNR, and only 15 minutes using rqN. A first Monte-Carlo exercise illustrates the accuracy of the method for estimation and inference in a probit IV regression. A second exercise additionally illustrates statistical efficiency gains relative to standard estimation for simulation-based estimation using a dynamic panel regression example.","PeriodicalId":8448,"journal":{"name":"arXiv: Econometrics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1257/PANDP.20211038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper illustrates two algorithms designed in Forneron & Ng (2020): the resampled Newton-Raphson (rNR) and resampled quasi-Newton (rqN) algorithms which speed-up estimation and bootstrap inference for structural models. An empirical application to BLP shows that computation time decreases from nearly 5 hours with the standard bootstrap to just over 1 hour with rNR, and only 15 minutes using rqN. A first Monte-Carlo exercise illustrates the accuracy of the method for estimation and inference in a probit IV regression. A second exercise additionally illustrates statistical efficiency gains relative to standard estimation for simulation-based estimation using a dynamic panel regression example.
随机优化的估计和推理:三个例子
本文阐述了Forneron & Ng(2020)设计的两种算法:重采样牛顿-拉夫森(rNR)和重采样准牛顿(rqN)算法,它们加速了结构模型的估计和自举推理。BLP的经验应用表明,计算时间从标准引导的近5小时减少到rNR的1小时多一点,而使用rqN的计算时间仅为15分钟。第一个蒙特卡罗练习说明了在probit IV回归中估计和推理方法的准确性。第二个练习还使用动态面板回归示例说明了相对于基于模拟的估计的标准估计的统计效率增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信