Flash Light Sintered Lanthanum Strontium Cobalt Ferrite(LSCF) Electrode for High Performance IT-SOFCs

Junghum Park, Hojae Lee, Yonghyun Lim, Ji-Eon Yoon, Miju Ku, Young‐Beom Kim
{"title":"Flash Light Sintered Lanthanum Strontium Cobalt Ferrite(LSCF) Electrode for High Performance IT-SOFCs","authors":"Junghum Park, Hojae Lee, Yonghyun Lim, Ji-Eon Yoon, Miju Ku, Young‐Beom Kim","doi":"10.31613/ceramist.2021.24.4.07","DOIUrl":null,"url":null,"abstract":"The high temperature(900oC~) thermal sintering process is necessary to fabricate the Solid oxide fuel cells(SOFCs). However, the chemical reaction has occurred between solid oxide material components, electrode and electrolyte. In the case of lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ, LSCF) electrode, the SrZrO3(SZO) secondary phase is produced at the electrolyte interface even when using the gadolinium doped ceria(GDC) buffer layer for blocking the strontium and zirconium diffusion. The SZO layer hinders the oxygen ion transfer and deteriorates fuel cell performance. By using a novel flash light sintering(FLS) method, we have successfully solved the problem of secondary phase formation in the conventional high temperature thermal sintering process. The microstructure and thickness of the LSCF electrode are analyzed using a field emission scanning electron microscope(FE-SEM). The strontium diffusion and secondary phase are confirmed by X-ray diffraction (XRD), energy dispersive spectrometer method of SEM, TEM (SEM-, TEM-EDS). The NiO-YSZ anode supported LSCF cathode cells are adopted for electro chemical analysis which is measured at 750oC. The maximum power density of the thermal sintered LSCF cathode at 1050oC is 699.6mW/cm2, while that of the flash light sintered LSCF cathode is 711.6mW/cm2. This result proves that the electrode was successfully sintered without a secondary phase using flash light sintering.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2021.24.4.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The high temperature(900oC~) thermal sintering process is necessary to fabricate the Solid oxide fuel cells(SOFCs). However, the chemical reaction has occurred between solid oxide material components, electrode and electrolyte. In the case of lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ, LSCF) electrode, the SrZrO3(SZO) secondary phase is produced at the electrolyte interface even when using the gadolinium doped ceria(GDC) buffer layer for blocking the strontium and zirconium diffusion. The SZO layer hinders the oxygen ion transfer and deteriorates fuel cell performance. By using a novel flash light sintering(FLS) method, we have successfully solved the problem of secondary phase formation in the conventional high temperature thermal sintering process. The microstructure and thickness of the LSCF electrode are analyzed using a field emission scanning electron microscope(FE-SEM). The strontium diffusion and secondary phase are confirmed by X-ray diffraction (XRD), energy dispersive spectrometer method of SEM, TEM (SEM-, TEM-EDS). The NiO-YSZ anode supported LSCF cathode cells are adopted for electro chemical analysis which is measured at 750oC. The maximum power density of the thermal sintered LSCF cathode at 1050oC is 699.6mW/cm2, while that of the flash light sintered LSCF cathode is 711.6mW/cm2. This result proves that the electrode was successfully sintered without a secondary phase using flash light sintering.
用于高性能it - sofc的闪光灯烧结镧锶钴铁氧体(LSCF)电极
高温(900℃~)热烧结工艺是制备固体氧化物燃料电池(sofc)的必要条件。然而,化学反应发生在固体氧化物材料组分、电极和电解质之间。在镧锶钴铁氧体(La0.6Sr0.4Co0.2Fe0.8O3-δ, LSCF)电极中,即使使用掺钆铈(GDC)缓冲层阻断锶锆扩散,也会在电解质界面产生SrZrO3(SZO)二次相。SZO层阻碍了氧离子的转移,降低了燃料电池的性能。采用一种新型的闪光烧结(FLS)方法,成功地解决了传统高温热烧结工艺中二次相的形成问题。利用场发射扫描电镜(FE-SEM)对LSCF电极的微观结构和厚度进行了分析。通过x射线衍射(XRD)、扫描电镜(SEM-)、透射电镜(TEM-)、TEM- eds等能谱分析方法证实了锶的扩散和二次相的存在。电化学分析采用NiO-YSZ阳极支撑的LSCF阴极电池,测量温度为750℃。1050℃时热烧结LSCF阴极的最大功率密度为699.6mW/cm2,而闪光灯烧结LSCF阴极的最大功率密度为711.6mW/cm2。实验结果表明,采用闪光灯烧结方法成功地烧结了无二次相的电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信