New Bound States for Modified Vibrational-Rotational Structure of Supersingular Plus Coulomb Potential of the Schrödinger Equation in One-Electron Atoms

A. Maireche
{"title":"New Bound States for Modified Vibrational-Rotational Structure of Supersingular Plus Coulomb Potential of the Schrödinger Equation in One-Electron Atoms","authors":"A. Maireche","doi":"10.18052/WWW.SCIPRESS.COM/ILCPA.73.31","DOIUrl":null,"url":null,"abstract":"In this study, three-dimensional modified time-independent Schrödinger equation of modified vibrational-rotational structure of supersingular plus Coulomb (v.r.s.c) potential was solved using Boopp’s shift method instead to apply star product, in the framework of both noncommutativity three dimensional real space and phase (NC: 3D-RSP). We have obtained the explicit energy eigenvalues for ground state and first excited state for interactions in one-electron atoms. Furthermore, the obtained corrections of energies are depended on infinitesimal parameters (Θ,χ) and (θ,σ) which are induced by position-position and momentum-momentum noncommutativity, respectively, in addition to the discreet atomic quantum numbers: j=l±1/2,s=±1/2,l and the angular momentum quantum number m. We have also shown that, the usual states in ordinary three dimensional spaces for ordinary vibrational-rotational structure of supersingular plus Coulomb potential are canceled and has been replaced by new degenerated 2(2l+1) sub-states in the extended new quantum symmetries of (NC: 3D-RSP).","PeriodicalId":14453,"journal":{"name":"International Letters of Chemistry, Physics and Astronomy","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Letters of Chemistry, Physics and Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILCPA.73.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this study, three-dimensional modified time-independent Schrödinger equation of modified vibrational-rotational structure of supersingular plus Coulomb (v.r.s.c) potential was solved using Boopp’s shift method instead to apply star product, in the framework of both noncommutativity three dimensional real space and phase (NC: 3D-RSP). We have obtained the explicit energy eigenvalues for ground state and first excited state for interactions in one-electron atoms. Furthermore, the obtained corrections of energies are depended on infinitesimal parameters (Θ,χ) and (θ,σ) which are induced by position-position and momentum-momentum noncommutativity, respectively, in addition to the discreet atomic quantum numbers: j=l±1/2,s=±1/2,l and the angular momentum quantum number m. We have also shown that, the usual states in ordinary three dimensional spaces for ordinary vibrational-rotational structure of supersingular plus Coulomb potential are canceled and has been replaced by new degenerated 2(2l+1) sub-states in the extended new quantum symmetries of (NC: 3D-RSP).
单电子原子中Schrödinger方程的超奇异加库仑势修正振动-旋转结构的新束缚态
在非交换性三维实空间和相(NC: 3D-RSP)的框架下,采用Boopp位移法代替星积,求解了超奇异加库仑势的修正振动旋转结构的三维修正时无关Schrödinger方程。我们得到了单电子原子相互作用的基态和第一激发态的显式能量特征值。此外,除了离散原子量子数外,得到的能量修正还依赖于由位置-位置和动量-动量非对易性分别引起的无穷小参数(Θ,χ)和(Θ, σ)。j=l±1/2,s=±1/2,l和角动量量子数m。我们还证明了在(NC: 3D-RSP)扩展的新量子对称中,超奇异加库仑势的普通振动-旋转结构在普通三维空间中的通常态被取消并被新的简并2(2l+1)子态所取代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信