{"title":"Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture","authors":"P. ThomasMarkR","doi":"10.1109/ICASSP.2019.8683559","DOIUrl":null,"url":null,"abstract":"The problem of higher order sound field capture with spherical microphone arrays is considered. While A-format cardioid designs are commonplace for first order capture, interest remains in the increased spatial resolution delivered by higher order arrays. Spherical arrays typically use omnidirectional microphones mounted on a rigid baffle, from which higher order spatial components are estimated by accounting for radial mode strength. This produces a design trade-off between with small arrays for spatial aliasing performance and large arrays for reduced amplification of instrument noise at low frequencies. A practical open sphere design is proposed that contains cardioid microphones mounted at multiple radii to fulfill both criteria. A design example with a two spheres of 16-channel cardioids at 42 mm and 420 mm radius produces white noise gain above unity on third order components down to 200 Hz, a decade lower than a rigid 32-channel 42 mm sphere of omnidirectional microphones.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"34 1","pages":"666-670"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The problem of higher order sound field capture with spherical microphone arrays is considered. While A-format cardioid designs are commonplace for first order capture, interest remains in the increased spatial resolution delivered by higher order arrays. Spherical arrays typically use omnidirectional microphones mounted on a rigid baffle, from which higher order spatial components are estimated by accounting for radial mode strength. This produces a design trade-off between with small arrays for spatial aliasing performance and large arrays for reduced amplification of instrument noise at low frequencies. A practical open sphere design is proposed that contains cardioid microphones mounted at multiple radii to fulfill both criteria. A design example with a two spheres of 16-channel cardioids at 42 mm and 420 mm radius produces white noise gain above unity on third order components down to 200 Hz, a decade lower than a rigid 32-channel 42 mm sphere of omnidirectional microphones.