Energy-Efficient Edge Inference on Multi-Channel Streaming Data in 28nm HKMG FeFET Technology

S. Dutta, W. Chakraborty, J. Gomez, K. Ni, S. Joshi, S. Datta
{"title":"Energy-Efficient Edge Inference on Multi-Channel Streaming Data in 28nm HKMG FeFET Technology","authors":"S. Dutta, W. Chakraborty, J. Gomez, K. Ni, S. Joshi, S. Datta","doi":"10.23919/VLSIT.2019.8776525","DOIUrl":null,"url":null,"abstract":"We present a system implementing extremely energy-efficient inference on multi-channel biomedical-sensor data. We leverage Ferroelectric FET (FeFET) to perform classification directly on analog sensor signals. We demonstrate: (i) voltage-controlled multi-domain ferroelectric polarization switching to obtain 8 distinct transconductance $(\\text{g}_{\\text{m}})$ states in a 28nm HKMG FeFET technology [1], (ii) 30x tunable range in $\\text{g}_{\\text{m}}$ over the bandwidth of interest, (iii) successful implementation of artifact removal, feature extraction and classification for seizure detection from CHB-MIT EEG dataset with 98.46% accuracy and $< 0.375/\\text{hr}$. false alarm rate for two patients, (iv) ultra-low energy of 47 fJ/MAC with 1,000x improvement in area compared to alternative mixed-signal MAC.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"12 1","pages":"T38-T39"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a system implementing extremely energy-efficient inference on multi-channel biomedical-sensor data. We leverage Ferroelectric FET (FeFET) to perform classification directly on analog sensor signals. We demonstrate: (i) voltage-controlled multi-domain ferroelectric polarization switching to obtain 8 distinct transconductance $(\text{g}_{\text{m}})$ states in a 28nm HKMG FeFET technology [1], (ii) 30x tunable range in $\text{g}_{\text{m}}$ over the bandwidth of interest, (iii) successful implementation of artifact removal, feature extraction and classification for seizure detection from CHB-MIT EEG dataset with 98.46% accuracy and $< 0.375/\text{hr}$. false alarm rate for two patients, (iv) ultra-low energy of 47 fJ/MAC with 1,000x improvement in area compared to alternative mixed-signal MAC.
28nm HKMG ffet技术中多通道流数据的高能效边缘推断
我们提出了一种对多通道生物医学传感器数据进行极节能推理的系统。我们利用铁电场效应管(FeFET)直接对模拟传感器信号进行分类。我们演示了:(i)电压控制的多域铁电极化开关在28nm HKMG FeFET技术中获得8个不同的跨导$(\text{g}_{\text{m}})$状态[1],(ii)在感兴趣的带宽上,$\text{g}_{\text{m}}$的30倍可调谐范围,(iii)成功实现了对CHB-MIT EEG数据集进行癫痫检测的伪像去除,特征提取和分类,准确率为98.46%,$< 0.375/\text{hr}$。(iv) 47 fJ/MAC的超低能量,与替代混合信号MAC相比,面积提高了1000倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信