{"title":"Instantaneous Center of Rotation-Based Master-Slave Kinematic Modeling and Control","authors":"V. Ramanathan, A. Zelenak, M. Pryor","doi":"10.1115/dscc2019-9123","DOIUrl":null,"url":null,"abstract":"\n This article presents a novel kinematic model and controller design for a mobile robot with four Centered Orientable Conventional (COC) wheels. When compared to non-conventional wheels, COC wheels perform better over rough terrain, are not subject to vertical chatter and offer better braking capability. However, COC wheels are pseudo-omnidirectional and subject to nonholonomic constraints. Several established modeling and control techniques define and control the Instantaneous Center of Rotation (ICR); however, this method involves singular configurations that are not trivial to eliminate. The proposed method uses a novel ICR-based kinematic model to avoid these singularities, and an ICR-based nonlinear controller for one ‘master’ wheel. The other ‘slave’ wheels simply track the resulting kinematic relationships between the ‘master’ wheel and the ICR. Thus, the nonlinear control problem is reduced from 12th to 3rd-order, becoming much more tractable. Simulations with a feedback linearization controller verify the approach.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a novel kinematic model and controller design for a mobile robot with four Centered Orientable Conventional (COC) wheels. When compared to non-conventional wheels, COC wheels perform better over rough terrain, are not subject to vertical chatter and offer better braking capability. However, COC wheels are pseudo-omnidirectional and subject to nonholonomic constraints. Several established modeling and control techniques define and control the Instantaneous Center of Rotation (ICR); however, this method involves singular configurations that are not trivial to eliminate. The proposed method uses a novel ICR-based kinematic model to avoid these singularities, and an ICR-based nonlinear controller for one ‘master’ wheel. The other ‘slave’ wheels simply track the resulting kinematic relationships between the ‘master’ wheel and the ICR. Thus, the nonlinear control problem is reduced from 12th to 3rd-order, becoming much more tractable. Simulations with a feedback linearization controller verify the approach.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.