{"title":"Chromaticity control in the Fermilab Main Injector","authors":"G. Wu, C. Bhat, B. Brown, D.E. Johnson","doi":"10.1109/PAC.1999.795332","DOIUrl":null,"url":null,"abstract":"Chromaticity control in the Fermilab Main Injector will be important both in accelerating protons and antiprotons from 8 GeV to 150 GeV (or 120 GeV) and in decelerating recycled 150 GeV antiprotons to 8 GeV for storage in the Recycler Ring. The Main Injector has two families of sextupoles to control the chromaticity. In addition to the natural chromaticity, they must correct for sextupole fields from ramp-rate-dependent eddy currents in the dipole beam pipes and current-dependent sextupole fields in the dipole magnets. The horizontal sextupole family is required to operate in a bipolar mode below the transition energy of 20 GeV. We describe methods used to control chromaticities in the Fermilab Main Injector. Emphasis is given to the software implementation of the operator interface to the front-end ramp controllers. Results of chromaticity measurements and their comparison with the design model will be presented.","PeriodicalId":20453,"journal":{"name":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","volume":"5 1","pages":"717-719 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1999.795332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Chromaticity control in the Fermilab Main Injector will be important both in accelerating protons and antiprotons from 8 GeV to 150 GeV (or 120 GeV) and in decelerating recycled 150 GeV antiprotons to 8 GeV for storage in the Recycler Ring. The Main Injector has two families of sextupoles to control the chromaticity. In addition to the natural chromaticity, they must correct for sextupole fields from ramp-rate-dependent eddy currents in the dipole beam pipes and current-dependent sextupole fields in the dipole magnets. The horizontal sextupole family is required to operate in a bipolar mode below the transition energy of 20 GeV. We describe methods used to control chromaticities in the Fermilab Main Injector. Emphasis is given to the software implementation of the operator interface to the front-end ramp controllers. Results of chromaticity measurements and their comparison with the design model will be presented.