Shoubhik Karmakar, M. Berkhout, K. Makinwa, Qinwen Fan
{"title":"A -91 dB THD+N Resistor-Less Class-D Piezoelectric Speaker Driver Using a Dual Voltage/ Current Feedback for LC Resonance Damping","authors":"Shoubhik Karmakar, M. Berkhout, K. Makinwa, Qinwen Fan","doi":"10.1109/ISSCC42614.2022.9731736","DOIUrl":null,"url":null,"abstract":"Piezoelectric speakers are gaining popularity on account of their improving form-factor and audio quality, making them a good fit for many audio applications such as in televisions, laptops, etc. Such speakers can be modelled as a large capacitive load, and so are typically driven by a Class-AB amplifier via a series resistor that ensures driver stability, and limits load current, but wastes power [1], [2]. In [3], the Class-AB amplifier is replaced by a more power-efficient Class-D amplifier (CDA) in series with an additional inductor. However, a series resistor is still required to damp the resulting LC resonant circuit, which could otherwise draw excessive currents when excited by large-signal distortion (e.g. clipping) harmonics around the LC resonance frequency. Alternatively, by using a feed-forward architecture based on LC filter diagnostics to limit overshoot currents, the series resistor can be replaced by a second inductor, at the expense of increased system complexity and cost [4].","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"7 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Piezoelectric speakers are gaining popularity on account of their improving form-factor and audio quality, making them a good fit for many audio applications such as in televisions, laptops, etc. Such speakers can be modelled as a large capacitive load, and so are typically driven by a Class-AB amplifier via a series resistor that ensures driver stability, and limits load current, but wastes power [1], [2]. In [3], the Class-AB amplifier is replaced by a more power-efficient Class-D amplifier (CDA) in series with an additional inductor. However, a series resistor is still required to damp the resulting LC resonant circuit, which could otherwise draw excessive currents when excited by large-signal distortion (e.g. clipping) harmonics around the LC resonance frequency. Alternatively, by using a feed-forward architecture based on LC filter diagnostics to limit overshoot currents, the series resistor can be replaced by a second inductor, at the expense of increased system complexity and cost [4].