Linear prediction filtering on cepstral time series for noise-robust speech recognition

Hsin-Ju Hsieh, Jhih-Hao Jheng, Jung-Shan Lin, J. Hung
{"title":"Linear prediction filtering on cepstral time series for noise-robust speech recognition","authors":"Hsin-Ju Hsieh, Jhih-Hao Jheng, Jung-Shan Lin, J. Hung","doi":"10.1109/ICCE-TW.2016.7521043","DOIUrl":null,"url":null,"abstract":"In this paper, we propose adopting the algorithm of linear prediction coding (LPC) to proceeds the temporal feature streams in speech recognition for noise robustness. Using LPC, an FIR filter can be obtained and applied to the time series of Mel-frequency cepstral coefficients (MFCC), and in general the fast-varying component in the modulation spectrum of MFCC can be alleviated accordingly. We have found that the smoothing of MFCC modulation spectrum helps to reduce the noise effect and enhance noise robustness of MFCC. Experiments conducted on the Aurora-2 connected digit database shows that the proposed LPC-wise method improves the recognition accuracy of MVN- and HEQ-preprocessed MFCC under a wide range of noise-corrupted situations.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"27 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7521043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose adopting the algorithm of linear prediction coding (LPC) to proceeds the temporal feature streams in speech recognition for noise robustness. Using LPC, an FIR filter can be obtained and applied to the time series of Mel-frequency cepstral coefficients (MFCC), and in general the fast-varying component in the modulation spectrum of MFCC can be alleviated accordingly. We have found that the smoothing of MFCC modulation spectrum helps to reduce the noise effect and enhance noise robustness of MFCC. Experiments conducted on the Aurora-2 connected digit database shows that the proposed LPC-wise method improves the recognition accuracy of MVN- and HEQ-preprocessed MFCC under a wide range of noise-corrupted situations.
基于倒谱时间序列的线性预测滤波的抗噪语音识别
本文提出采用线性预测编码(LPC)算法对语音识别中的时序特征流进行鲁棒性处理。利用LPC可以得到FIR滤波器,并将其应用于mel -频率倒谱系数(MFCC)的时间序列,从而减轻了MFCC调制频谱中的快速变化分量。研究发现,对MFCC调制频谱进行平滑处理有助于降低噪声影响,提高MFCC的噪声鲁棒性。在极光-2连接数字数据库上进行的实验表明,该方法提高了MVN和heq预处理的MFCC在大范围噪声破坏情况下的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信