Optimizing the Segmentation of a High-Resolution Image by Using a Local Scale Parameter

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL
Lei Zhang, Hongchao Liu, Xiaosong Li, Xinyu Qian
{"title":"Optimizing the Segmentation of a High-Resolution Image by Using a Local Scale Parameter","authors":"Lei Zhang, Hongchao Liu, Xiaosong Li, Xinyu Qian","doi":"10.14358/pers.87.7.503","DOIUrl":null,"url":null,"abstract":"Image segmentation is a critical procedure in object-based identification and classification of remote sensing data. However, optimal scale-parameter selection presents a challenge, given the presence of complex landscapes and uncertain feature changes. This study proposes a local optimal\n segmentation approach that considers both intersegment heterogeneity and intrasegment homogeneity, uses the standard deviation and local Moran's index to explore each optimal segment across different scale parameters, and combines the optimal segments into a single layer. The optimal segment\n is measured by using high-spatial-resolution images. Results show that our approach out-performs and generates less error than the global optimal segmentation approach. The variety of land cover types or intrasegment homogeneity leads to segment matching with the geo-objects on different scales.\n Local optimal segmentation demonstrates sensitivity to land cover discrepancy and provides good performance on cross-scale segmentation.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/pers.87.7.503","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Image segmentation is a critical procedure in object-based identification and classification of remote sensing data. However, optimal scale-parameter selection presents a challenge, given the presence of complex landscapes and uncertain feature changes. This study proposes a local optimal segmentation approach that considers both intersegment heterogeneity and intrasegment homogeneity, uses the standard deviation and local Moran's index to explore each optimal segment across different scale parameters, and combines the optimal segments into a single layer. The optimal segment is measured by using high-spatial-resolution images. Results show that our approach out-performs and generates less error than the global optimal segmentation approach. The variety of land cover types or intrasegment homogeneity leads to segment matching with the geo-objects on different scales. Local optimal segmentation demonstrates sensitivity to land cover discrepancy and provides good performance on cross-scale segmentation.
利用局部尺度参数优化高分辨率图像分割
图像分割是基于地物的遥感数据识别与分类的关键步骤。然而,考虑到复杂的景观和不确定的特征变化,优化尺度参数的选择是一个挑战。本研究提出了一种同时考虑段间异质性和段内同质性的局部最优分割方法,利用标准差和局部Moran指数对不同尺度参数下的各最优分割段进行探索,并将最优分割段组合成单层。利用高空间分辨率图像测量最佳分割。结果表明,该方法优于全局最优分割方法,产生的误差更小。土地覆盖类型的多样性或片段内的同质性导致了不同尺度的地物与片段的匹配。局部最优分割对土地覆盖差异具有敏感性,在跨尺度分割中具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photogrammetric Engineering and Remote Sensing
Photogrammetric Engineering and Remote Sensing 地学-成像科学与照相技术
CiteScore
1.70
自引率
15.40%
发文量
89
审稿时长
9 months
期刊介绍: Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers. We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信