A Topological Characterization of the Middle Perversity Intersection Complex for Arbitrary Complex Algebraic Varieties

IF 0.4 Q4 MATHEMATICS
Ben Wu
{"title":"A Topological Characterization of the Middle Perversity Intersection Complex for Arbitrary Complex Algebraic Varieties","authors":"Ben Wu","doi":"10.5427/jsing.2020.20c","DOIUrl":null,"url":null,"abstract":"For an arbitrary complex algebraic variety which is not necessarily pure dimensional, the intersection complex can be defined as the direct sum of the Deligne-Goresky-Macpherson intersection complexes of each irreducible component. We give two axiomatic topological characterizations of the middle perversity direct sum intersection complex, one stratification dependent and the other stratification independent. To accomplish this, we show that this direct sum intersection complex can be constructed using Deligne's construction in the more general context of topologically stratified spaces. A consequence of these characterizations is the invariance of this direct sum intersection complex under homeomorphisms.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.20c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

For an arbitrary complex algebraic variety which is not necessarily pure dimensional, the intersection complex can be defined as the direct sum of the Deligne-Goresky-Macpherson intersection complexes of each irreducible component. We give two axiomatic topological characterizations of the middle perversity direct sum intersection complex, one stratification dependent and the other stratification independent. To accomplish this, we show that this direct sum intersection complex can be constructed using Deligne's construction in the more general context of topologically stratified spaces. A consequence of these characterizations is the invariance of this direct sum intersection complex under homeomorphisms.
任意复数代数变种的中反常交复的拓扑刻画
对于一个不一定是纯维的任意复数代数变量,交点复形可以定义为各不可约分量的delign - goresky - macpherson交点复形的直接和。给出了中反常直和交复合体的两个公理拓扑刻画,一个是分层相关的,另一个是分层无关的。为了实现这一点,我们证明了在更一般的拓扑分层空间中,可以使用Deligne构造来构造这个直和交集复合体。这些刻画的一个结果是这个直和交复在同胚下的不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信