{"title":"Liposomes in investigative dermatology.","authors":"D. Yarosh","doi":"10.1034/J.1600-0781.2001.170501.X","DOIUrl":null,"url":null,"abstract":"Liposomes are microscopic spheres, usually composed of amphiphilic phospholipids. They may be useful without skin penetration if they simply protect or sequester compounds that would otherwise be unstable in the formulation. Liposomes that remain on the skin surface are useful as light-absorbers, agents to deliver color or sunscreens, or as depots for timed-release. Liposomes that penetrate the stratum corneum have the potential to interact with living tissue. Topically applied liposomes can either mix with the stratum corneum lipid matrix or penetrate the stratum corneum by exploiting the lipid-water interface of the intercellular matrix. There are at least four major routes of entry into the skin: pores, hair follicles, columnular spaces and the lipid:water matrix between squames. A major force driving liposome penetration is the water gradient, and flexible liposomes are best able to exploit these delivery opportunities. Some liposomes release their contents extracellularly. Topical application of photosensitizers may be enhanced by encapsulation in liposomes. Higher and longer-lasting drug concentrations may be produced in localized areas of skin, particularly at disease sites where the stratum corneum and the skin barrier function are disrupted. The liposome membrane should be designed to capture lipophilic drugs in the membrane or hydrophilic drugs in the interior. Other types of liposomes can be engineered to be taken up by cells. Once inside cells, the lysosomal sac and clatherin-coated pit are the dead-end destinations for liposomes unless an escape path has been engineered into the liposome. A novel method has been developed to allow delivery into cells of the skin, by escape from the lysosomal sac. These liposomes have been used to topical deliver active DNA repair enzymes from liposomes into epidermal cells and to enhance DNA repair of UV-irradiated skin. From these studies a tremendous amount has been learned about the relationship of DNA damage and skin cancer. Both mutations and immunosuppression appear to be essential to skin cancer and both are induced by DNA damage. DNA damage produces immediate effects by inducing the expression of cytokines, which means that DNA damage can induce signaling in neighboring, undamaged cells. The repair of only a fraction of the DNA damage has a disproportionate effect on the biological responses, clearly demonstrating that not all DNA damage is equivalent. This technology demonstrates that biologically active proteins can be delivered into the cells of skin, and opens up a new field of correcting or enhancing skin cell metabolism to improve human health.","PeriodicalId":20104,"journal":{"name":"Photodermatology, Photoimmunology and Photomedicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photodermatology, Photoimmunology and Photomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1034/J.1600-0781.2001.170501.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
Liposomes are microscopic spheres, usually composed of amphiphilic phospholipids. They may be useful without skin penetration if they simply protect or sequester compounds that would otherwise be unstable in the formulation. Liposomes that remain on the skin surface are useful as light-absorbers, agents to deliver color or sunscreens, or as depots for timed-release. Liposomes that penetrate the stratum corneum have the potential to interact with living tissue. Topically applied liposomes can either mix with the stratum corneum lipid matrix or penetrate the stratum corneum by exploiting the lipid-water interface of the intercellular matrix. There are at least four major routes of entry into the skin: pores, hair follicles, columnular spaces and the lipid:water matrix between squames. A major force driving liposome penetration is the water gradient, and flexible liposomes are best able to exploit these delivery opportunities. Some liposomes release their contents extracellularly. Topical application of photosensitizers may be enhanced by encapsulation in liposomes. Higher and longer-lasting drug concentrations may be produced in localized areas of skin, particularly at disease sites where the stratum corneum and the skin barrier function are disrupted. The liposome membrane should be designed to capture lipophilic drugs in the membrane or hydrophilic drugs in the interior. Other types of liposomes can be engineered to be taken up by cells. Once inside cells, the lysosomal sac and clatherin-coated pit are the dead-end destinations for liposomes unless an escape path has been engineered into the liposome. A novel method has been developed to allow delivery into cells of the skin, by escape from the lysosomal sac. These liposomes have been used to topical deliver active DNA repair enzymes from liposomes into epidermal cells and to enhance DNA repair of UV-irradiated skin. From these studies a tremendous amount has been learned about the relationship of DNA damage and skin cancer. Both mutations and immunosuppression appear to be essential to skin cancer and both are induced by DNA damage. DNA damage produces immediate effects by inducing the expression of cytokines, which means that DNA damage can induce signaling in neighboring, undamaged cells. The repair of only a fraction of the DNA damage has a disproportionate effect on the biological responses, clearly demonstrating that not all DNA damage is equivalent. This technology demonstrates that biologically active proteins can be delivered into the cells of skin, and opens up a new field of correcting or enhancing skin cell metabolism to improve human health.