Time-resolved denoising using model order reduction, dynamic mode decomposition, and kalman filter and smoother

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mojtaba F. Fathi, Ahmadreza Baghaie, A. Bakhshinejad, Raphael H. Sacho, Roshan M. D'Souza
{"title":"Time-resolved denoising using model order reduction, dynamic mode decomposition, and kalman filter and smoother","authors":"Mojtaba F. Fathi, Ahmadreza Baghaie, A. Bakhshinejad, Raphael H. Sacho, Roshan M. D'Souza","doi":"10.3934/jcd.2020019","DOIUrl":null,"url":null,"abstract":"In this research, we investigate the application of Dynamic Mode Decomposition combined with Kalman Filtering, Smoothing, and Wavelet Denoising (DMD-KF-W) for denoising time-resolved data. We also compare the performance of this technique with state-of-the-art denoising methods such as Total Variation Diminishing (TV) and Divergence-Free Wavelets (DFW), when applicable. Dynamic Mode Decomposition (DMD) is a data-driven method for finding the spatio-temporal structures in time series data. In this research, we use an autoregressive linear model resulting from applying DMD to the time-resolved data as a predictor in a Kalman Filtering-Smoothing framework for the purpose of denoising. The DMD-KF-W method is parameter-free and runs autonomously. Tests on numerical phantoms show lower error metrics when compared to TV and DFW, when applicable. In addition, DMD-KF-W runs an order of magnitude faster than DFW and TV. In the case of synthetic datasets, where the noise-free datasets were available, our method was shown to perform better than TV and DFW methods (when applicable) in terms of the defined error metric.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2020019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

In this research, we investigate the application of Dynamic Mode Decomposition combined with Kalman Filtering, Smoothing, and Wavelet Denoising (DMD-KF-W) for denoising time-resolved data. We also compare the performance of this technique with state-of-the-art denoising methods such as Total Variation Diminishing (TV) and Divergence-Free Wavelets (DFW), when applicable. Dynamic Mode Decomposition (DMD) is a data-driven method for finding the spatio-temporal structures in time series data. In this research, we use an autoregressive linear model resulting from applying DMD to the time-resolved data as a predictor in a Kalman Filtering-Smoothing framework for the purpose of denoising. The DMD-KF-W method is parameter-free and runs autonomously. Tests on numerical phantoms show lower error metrics when compared to TV and DFW, when applicable. In addition, DMD-KF-W runs an order of magnitude faster than DFW and TV. In the case of synthetic datasets, where the noise-free datasets were available, our method was shown to perform better than TV and DFW methods (when applicable) in terms of the defined error metric.
时间分辨去噪使用模型降阶,动态模式分解,卡尔曼滤波和平滑
在本研究中,我们研究了动态模态分解结合卡尔曼滤波、平滑和小波去噪(DMD-KF-W)在时间分辨数据去噪中的应用。我们还比较了该技术的性能与最先进的降噪方法,如总变差递减(TV)和无发散小波(DFW),当适用时。动态模态分解(Dynamic Mode Decomposition, DMD)是一种数据驱动的方法,用于发现时间序列数据中的时空结构。在本研究中,我们使用自回归线性模型,将DMD应用于时间分辨数据作为卡尔曼滤波平滑框架中的预测器,以达到去噪的目的。DMD-KF-W方法无参数且自主运行。在适用的情况下,与TV和DFW相比,对数字幻影的测试显示出更低的误差度量。此外,DMD-KF-W的运行速度比DFW和TV快一个数量级。在合成数据集的情况下,无噪声数据集可用,我们的方法在定义的误差度量方面表现优于TV和DFW方法(适用时)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信