{"title":"Foliated structure of the Kuranishi space and isomorphisms of deformation families of compact complex manifolds","authors":"L. Meersseman","doi":"10.24033/asens.2148","DOIUrl":null,"url":null,"abstract":"Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of $0$ in $\\Bbb C^p$, for some $p>0$) or differentiable (parametrized by an open neighborhood of $0$ in $\\Bbb R^p$, for some $p>0$) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point $t$ of the parameter space, the fiber over $t$ of the first family is biholomorphic to the fiber over $t$ of the second family. Then, under which conditions are the two families locally isomorphic at 0? In this article, we give a sufficient condition in the case of holomorphic families. We show then that, surprisingly, this condition is not sufficient in the case of differentiable families. We also describe different types of counterexamples and give some elements of classification of the counterexamples. These results rely on a geometric study of the Kuranishi space of a compact complex manifold.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"24 1","pages":"495-525"},"PeriodicalIF":1.3000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/asens.2148","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13
Abstract
Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of $0$ in $\Bbb C^p$, for some $p>0$) or differentiable (parametrized by an open neighborhood of $0$ in $\Bbb R^p$, for some $p>0$) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point $t$ of the parameter space, the fiber over $t$ of the first family is biholomorphic to the fiber over $t$ of the second family. Then, under which conditions are the two families locally isomorphic at 0? In this article, we give a sufficient condition in the case of holomorphic families. We show then that, surprisingly, this condition is not sufficient in the case of differentiable families. We also describe different types of counterexamples and give some elements of classification of the counterexamples. These results rely on a geometric study of the Kuranishi space of a compact complex manifold.
期刊介绍:
The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics.
Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition.
The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.