Modelling and effective properties prediction of metal foams

José Aquino, Isabel Duarte, João Dias-de-Oliveira
{"title":"Modelling and effective properties prediction of metal foams","authors":"José Aquino,&nbsp;Isabel Duarte,&nbsp;João Dias-de-Oliveira","doi":"10.1016/j.stmat.2018.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>This work focuses on finding methodologies to describe the effective elastic properties of metal foams<span><span>. For this purpose, numerical methods and analytical models, were used. Kelvin cells and Weaire–Phelan structures were modelled to represent both open and closed-cell representative unit-cells. These unit-cells were then subjected to different homogenization methods<span>: (i) Far field methods with single freedom constraints, where it was used two different approaches based on the load case. (ii) Asymptotic Expansion </span></span>Homogenization (AEH) with periodic boundary conditions. The analytical, numerical and experimental results were then compared. The results indicate that the far field methods gave more precise predictions. However, AEH provides more information on the behaviour of the unit-cells. Using this detailed information, it was possible to perform an anisotropy analysis. Furthermore, contrary to the closed-cells, the open-cell numerical methods and analytical models are within the experimental results range.</span></p></div>","PeriodicalId":101145,"journal":{"name":"Science and Technology of Materials","volume":"30 1","pages":"Pages 43-49"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stmat.2018.01.004","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2603636318300113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work focuses on finding methodologies to describe the effective elastic properties of metal foams. For this purpose, numerical methods and analytical models, were used. Kelvin cells and Weaire–Phelan structures were modelled to represent both open and closed-cell representative unit-cells. These unit-cells were then subjected to different homogenization methods: (i) Far field methods with single freedom constraints, where it was used two different approaches based on the load case. (ii) Asymptotic Expansion Homogenization (AEH) with periodic boundary conditions. The analytical, numerical and experimental results were then compared. The results indicate that the far field methods gave more precise predictions. However, AEH provides more information on the behaviour of the unit-cells. Using this detailed information, it was possible to perform an anisotropy analysis. Furthermore, contrary to the closed-cells, the open-cell numerical methods and analytical models are within the experimental results range.

金属泡沫的建模与有效性能预测
这项工作的重点是寻找方法来描述金属泡沫的有效弹性特性。为此,采用了数值方法和解析模型。开尔文细胞和Weaire-Phelan结构被建模来代表开放细胞和封闭细胞的代表单位-细胞。然后,这些单元格采用不同的均质方法:(i)具有单一自由约束的远场方法,其中根据负载情况使用两种不同的方法。(ii)具有周期边界条件的渐近展开均匀化(AEH)。并对分析、数值和实验结果进行了比较。结果表明,远场方法给出了更精确的预测。然而,AEH提供了更多关于单元胞行为的信息。利用这些详细信息,可以进行各向异性分析。此外,与闭孔不同,开孔数值方法和解析模型在实验结果范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信