A novel approach on hybrid Support Vector Machines into optimal portfolio selection

Nikos Loukeris, I. Eleftheriadis, E. Livanis
{"title":"A novel approach on hybrid Support Vector Machines into optimal portfolio selection","authors":"Nikos Loukeris, I. Eleftheriadis, E. Livanis","doi":"10.1109/ISSPIT.2013.6781852","DOIUrl":null,"url":null,"abstract":"The efficient representation of the accurate corporate value on the stock price is vital to investors and fund managers that desire to optimize the net worth of the overall stock portfolio. Although Efficient Market Hypothesis sets limits, the practice of markets is an ideal place of manipulation, and corruption on prices. The accounting statements, evaluated by Support Vector Machines and the SVM Hybrids under Genetic Algorithms provide excellence in portfolio selection. A specific Neuro-genetic Hybrid SVM outperformed all examined SVM models being a powerful tool in financial analysis.","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"8 5 1","pages":"000046-000051"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2013.6781852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The efficient representation of the accurate corporate value on the stock price is vital to investors and fund managers that desire to optimize the net worth of the overall stock portfolio. Although Efficient Market Hypothesis sets limits, the practice of markets is an ideal place of manipulation, and corruption on prices. The accounting statements, evaluated by Support Vector Machines and the SVM Hybrids under Genetic Algorithms provide excellence in portfolio selection. A specific Neuro-genetic Hybrid SVM outperformed all examined SVM models being a powerful tool in financial analysis.
一种基于混合支持向量机的投资组合最优选择方法
对于希望优化整个股票投资组合净值的投资者和基金经理来说,准确的公司价值在股票价格上的有效表示是至关重要的。尽管有效市场假说设定了限制,但市场实践是操纵和腐败价格的理想场所。利用遗传算法下的支持向量机和支持向量机混合模型对会计报表进行评价,使其具有较好的投资组合选择效果。一个特定的神经遗传混合支持向量机优于所有检验支持向量机模型是一个强大的工具,在金融分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信