An Adaptive Smoothness Parameter Strategy for Variational Optical Flow Model

Sci. Program. Pub Date : 2021-12-29 DOI:10.1155/2021/7594636
H. Z. H. Alsharif, Tong Shu, Bin Zhu, Farisi Zeyad Sahl
{"title":"An Adaptive Smoothness Parameter Strategy for Variational Optical Flow Model","authors":"H. Z. H. Alsharif, Tong Shu, Bin Zhu, Farisi Zeyad Sahl","doi":"10.1155/2021/7594636","DOIUrl":null,"url":null,"abstract":"The smoothness parameter is used to balance the weight of the data term and the smoothness term in variational optical flow model, which plays very significant role for the optical flow estimation, but existing methods fail to obtain the optimal smoothness parameters (OSP). In order to solve this problem, an adaptive smoothness parameter strategy is proposed. First, an amalgamated simple linear iterative cluster (SLIC) and local membership function (LMF) algorithm is used to segment the entire image into several superpixel regions. Then, image quality parameters (IQP) are calculated, respectively, for each superpixel region. Finally, a neural network model is applied to compute the smoothness parameter by these image quality parameters of each superpixel region. Experiments were done in three public datasets (Middlebury, MPI_Sintel, and KITTI) and our self-constructed outdoor dataset with the proposed method and other existing classical methods; the results show that our OSP method achieves higher accuracy than other smoothness parameter selection methods in all these four datasets. Combined with the dual fractional order variational optical flow model (DFOVOFM), the proposed model shows better performance than other models in scenes with illumination inhomogeneity and abnormity. The OSP method fills the blank of the research of adaptive smoothness parameter, pushing the development of the variational optical flow models.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"1 1","pages":"7594636:1-7594636:12"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/7594636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The smoothness parameter is used to balance the weight of the data term and the smoothness term in variational optical flow model, which plays very significant role for the optical flow estimation, but existing methods fail to obtain the optimal smoothness parameters (OSP). In order to solve this problem, an adaptive smoothness parameter strategy is proposed. First, an amalgamated simple linear iterative cluster (SLIC) and local membership function (LMF) algorithm is used to segment the entire image into several superpixel regions. Then, image quality parameters (IQP) are calculated, respectively, for each superpixel region. Finally, a neural network model is applied to compute the smoothness parameter by these image quality parameters of each superpixel region. Experiments were done in three public datasets (Middlebury, MPI_Sintel, and KITTI) and our self-constructed outdoor dataset with the proposed method and other existing classical methods; the results show that our OSP method achieves higher accuracy than other smoothness parameter selection methods in all these four datasets. Combined with the dual fractional order variational optical flow model (DFOVOFM), the proposed model shows better performance than other models in scenes with illumination inhomogeneity and abnormity. The OSP method fills the blank of the research of adaptive smoothness parameter, pushing the development of the variational optical flow models.
变分光流模型的自适应平滑参数策略
在变分光流模型中,平滑参数用于平衡数据项和光流项的权重,在光流估计中起着非常重要的作用,但现有的方法无法获得最优的平滑参数(OSP)。为了解决这一问题,提出了一种自适应平滑参数策略。首先,采用简单线性迭代聚类(SLIC)和局部隶属函数(LMF)混合算法将整幅图像分割成多个超像素区域;然后,分别计算每个超像素区域的图像质量参数(IQP)。最后,利用神经网络模型对每个超像素区域的图像质量参数进行平滑度计算。在Middlebury、mpi_sinintel和KITTI三个公共数据集和我们自己构建的室外数据集上,采用本文提出的方法和其他经典方法进行了实验;结果表明,在这4个数据集上,我们的OSP方法比其他平滑参数选择方法具有更高的精度。结合双分数阶变分光流模型(DFOVOFM),该模型在光照不均匀和异常的场景下表现出较好的性能。OSP方法填补了自适应平滑参数研究的空白,推动了变分光流模型的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信