{"title":"Overall Equipment Effectiveness Prediction with Multiple Linear Regression for Semi-automatic Automotive Assembly Lines","authors":"Péter Dobra, J. Jósvai","doi":"10.3311/ppme.22302","DOIUrl":null,"url":null,"abstract":"In the field of industry, especially in the production areas, it is particularly important that the monitoring of assembly efficiency takes place in real-time mode, and that the related data-based estimation also works quickly and reliably. The Manufacturing Execution System (MES), Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM) systems used by companies provide excellent support in data recording, processes, and storing. For Overall Equipment Effectiveness (OEE) data showing the efficiency of assembly lines, there is a regular need to determine expected values. This paper focuses on OEE values prediction with Multiple Linear Regression (MLR) as supervised machine learning. Many factors affecting OEE (e.g., downtimes, cycle time) are examined and analyzed in order to make a more accurate estimation. Based on real industrial data, we used four different methods to perform prediction with various machine learning algorithms, these were the cumulative, fix rolling horizon, optimal rolling horizon and combined techniques. Each method is evaluated based on similar mathematical formulas.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.22302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of industry, especially in the production areas, it is particularly important that the monitoring of assembly efficiency takes place in real-time mode, and that the related data-based estimation also works quickly and reliably. The Manufacturing Execution System (MES), Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM) systems used by companies provide excellent support in data recording, processes, and storing. For Overall Equipment Effectiveness (OEE) data showing the efficiency of assembly lines, there is a regular need to determine expected values. This paper focuses on OEE values prediction with Multiple Linear Regression (MLR) as supervised machine learning. Many factors affecting OEE (e.g., downtimes, cycle time) are examined and analyzed in order to make a more accurate estimation. Based on real industrial data, we used four different methods to perform prediction with various machine learning algorithms, these were the cumulative, fix rolling horizon, optimal rolling horizon and combined techniques. Each method is evaluated based on similar mathematical formulas.
期刊介绍:
Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.