Ultrasonic agglomeration-fragmentation of diamond nanoparticles

O. Kudryashova, A. Vereshchagin, A. V. Balakhnina, E. A. Petrov
{"title":"Ultrasonic agglomeration-fragmentation of diamond nanoparticles","authors":"O. Kudryashova, A. Vereshchagin, A. V. Balakhnina, E. A. Petrov","doi":"10.1063/1.5132056","DOIUrl":null,"url":null,"abstract":"A lot of practical applications of nanoparticles assume a technological stage of introduction of particles into liquid. Meanwhile, particles could have a poor wettability. Nanostructural agglomerates contain micro- and nanopores filled with air. External impact is necessary to defragment these agglomerates. Ultrasonic treatment is often used for these purposes. Ultrasonic impact can break the agglomerate to original particles and can serve coagulation and growth of the sizes of the agglomerate. We have found the criterion of the leading mechanism (fragmentation or agglomeration) at ultrasonic processing of suspensions of nanodiamond in this work. Dynamics of the change of particles’ sizes at ultrasonic processing is considered theoretically and experimentally.A lot of practical applications of nanoparticles assume a technological stage of introduction of particles into liquid. Meanwhile, particles could have a poor wettability. Nanostructural agglomerates contain micro- and nanopores filled with air. External impact is necessary to defragment these agglomerates. Ultrasonic treatment is often used for these purposes. Ultrasonic impact can break the agglomerate to original particles and can serve coagulation and growth of the sizes of the agglomerate. We have found the criterion of the leading mechanism (fragmentation or agglomeration) at ultrasonic processing of suspensions of nanodiamond in this work. Dynamics of the change of particles’ sizes at ultrasonic processing is considered theoretically and experimentally.","PeriodicalId":20637,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5132056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A lot of practical applications of nanoparticles assume a technological stage of introduction of particles into liquid. Meanwhile, particles could have a poor wettability. Nanostructural agglomerates contain micro- and nanopores filled with air. External impact is necessary to defragment these agglomerates. Ultrasonic treatment is often used for these purposes. Ultrasonic impact can break the agglomerate to original particles and can serve coagulation and growth of the sizes of the agglomerate. We have found the criterion of the leading mechanism (fragmentation or agglomeration) at ultrasonic processing of suspensions of nanodiamond in this work. Dynamics of the change of particles’ sizes at ultrasonic processing is considered theoretically and experimentally.A lot of practical applications of nanoparticles assume a technological stage of introduction of particles into liquid. Meanwhile, particles could have a poor wettability. Nanostructural agglomerates contain micro- and nanopores filled with air. External impact is necessary to defragment these agglomerates. Ultrasonic treatment is often used for these purposes. Ultrasonic impact can break the agglomerate to original particles and can serve coagulation and growth of the sizes of the agglomerate. We have found the criterion of the leading mechanism (fragmentation or agglomeration) at ultrasonic processing of suspensions of nanodiamond in this work. Dynamics of the change of particles’ sizes at ultrasonic processing is considered theoretically and experimentally.
金刚石纳米颗粒的超声团聚破碎
纳米粒子的许多实际应用都处于将粒子引入液体的技术阶段。同时,颗粒的润湿性可能很差。纳米结构团块包含充满空气的微孔和纳米孔。需要外部冲击来清理这些团块。超声治疗通常用于这些目的。超声波冲击可使团聚体破碎成原颗粒,有利于团聚体粒径的凝聚和生长。本文找到了超声处理纳米金刚石悬浮液的主导机制(破碎或团聚)的判据。从理论上和实验上考虑了超声加工过程中颗粒尺寸变化的动力学特性。纳米粒子的许多实际应用都处于将粒子引入液体的技术阶段。同时,颗粒的润湿性可能很差。纳米结构团块包含充满空气的微孔和纳米孔。需要外部冲击来清理这些团块。超声治疗通常用于这些目的。超声波冲击可使团聚体破碎成原颗粒,有利于团聚体粒径的凝聚和生长。本文找到了超声处理纳米金刚石悬浮液的主导机制(破碎或团聚)的判据。从理论上和实验上考虑了超声加工过程中颗粒尺寸变化的动力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信