Constructions for several classes of few-weight linear codes and their applications

IF 0.7 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Canze Zhu, Qunying Liao
{"title":"Constructions for several classes of few-weight linear codes and their applications","authors":"Canze Zhu, Qunying Liao","doi":"10.3934/amc.2022041","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, for any odd prime <inline-formula><tex-math id=\"M1\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula> and an integer <inline-formula><tex-math id=\"M2\">\\begin{document}$ m\\ge 3 $\\end{document}</tex-math></inline-formula>, several classes of linear codes with <inline-formula><tex-math id=\"M3\">\\begin{document}$ t $\\end{document}</tex-math></inline-formula>-weight <inline-formula><tex-math id=\"M4\">\\begin{document}$ (t = 3,5,7) $\\end{document}</tex-math></inline-formula> are obtained based on some defining sets, and then their complete weight enumerators are determined explicitly by employing Gauss sums and quadratic character sums. Especially for <inline-formula><tex-math id=\"M5\">\\begin{document}$ m = 3 $\\end{document}</tex-math></inline-formula>, a class of MDS codes with parameters <inline-formula><tex-math id=\"M6\">\\begin{document}$ [p,3,p-2] $\\end{document}</tex-math></inline-formula> are obtained. Furthermore, some of these codes can be suitable for applications in secret sharing schemes and <inline-formula><tex-math id=\"M7\">\\begin{document}$ s $\\end{document}</tex-math></inline-formula>-sum sets for any odd <inline-formula><tex-math id=\"M8\">\\begin{document}$ s>1 $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2022041","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, for any odd prime \begin{document}$ p $\end{document} and an integer \begin{document}$ m\ge 3 $\end{document}, several classes of linear codes with \begin{document}$ t $\end{document}-weight \begin{document}$ (t = 3,5,7) $\end{document} are obtained based on some defining sets, and then their complete weight enumerators are determined explicitly by employing Gauss sums and quadratic character sums. Especially for \begin{document}$ m = 3 $\end{document}, a class of MDS codes with parameters \begin{document}$ [p,3,p-2] $\end{document} are obtained. Furthermore, some of these codes can be suitable for applications in secret sharing schemes and \begin{document}$ s $\end{document}-sum sets for any odd \begin{document}$ s>1 $\end{document}.

几类少权线性码的构造及其应用
In this paper, for any odd prime \begin{document}$ p $\end{document} and an integer \begin{document}$ m\ge 3 $\end{document}, several classes of linear codes with \begin{document}$ t $\end{document}-weight \begin{document}$ (t = 3,5,7) $\end{document} are obtained based on some defining sets, and then their complete weight enumerators are determined explicitly by employing Gauss sums and quadratic character sums. Especially for \begin{document}$ m = 3 $\end{document}, a class of MDS codes with parameters \begin{document}$ [p,3,p-2] $\end{document} are obtained. Furthermore, some of these codes can be suitable for applications in secret sharing schemes and \begin{document}$ s $\end{document}-sum sets for any odd \begin{document}$ s>1 $\end{document}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics of Communications
Advances in Mathematics of Communications 工程技术-计算机:理论方法
CiteScore
2.20
自引率
22.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected. Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome. More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信