{"title":"Forward-modulated damping estimates and nonlocalized stability of periodic Lugiato–Lefever waves","authors":"K. Zumbrun","doi":"10.4171/aihpc/76","DOIUrl":null,"url":null,"abstract":"In an interesting recent analysis, Haragus-Johnson-Perkins-de Rijk have shown modulational stability under localized perturbations of steady periodic solutions of the Lugiato-Lefever equation (LLE), in the process pointing out a difficulty in obtaining standard\"nonlinear damping estimates\"on modulated perturbation variables to control regularity of solutions. Here, we point out that in place of standard\"inverse-modulated\"damping estimates, one can alternatively carry out a damping estimate on the\"forward-modulated\"perturbation, noting that norms of forward- and inverse-modulated variables are equivalent modulo absorbable errors, thus recovering the classical argument structure of Johnson-Noble-Rodrigues-Zumbrun for parabolic systems. This observation seems of general use in situations of delicate regularity. Applied in the context of (LLE) it gives the stronger result of stability and asymptotic behavior with respect to nonlocalized perturbations.","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"130 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/76","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
In an interesting recent analysis, Haragus-Johnson-Perkins-de Rijk have shown modulational stability under localized perturbations of steady periodic solutions of the Lugiato-Lefever equation (LLE), in the process pointing out a difficulty in obtaining standard"nonlinear damping estimates"on modulated perturbation variables to control regularity of solutions. Here, we point out that in place of standard"inverse-modulated"damping estimates, one can alternatively carry out a damping estimate on the"forward-modulated"perturbation, noting that norms of forward- and inverse-modulated variables are equivalent modulo absorbable errors, thus recovering the classical argument structure of Johnson-Noble-Rodrigues-Zumbrun for parabolic systems. This observation seems of general use in situations of delicate regularity. Applied in the context of (LLE) it gives the stronger result of stability and asymptotic behavior with respect to nonlocalized perturbations.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.