Powder X‐Ray Diffraction Pattern Is All You Need for Machine‐Learning‐Based Symmetry Identification and Property Prediction

Byung Do Lee, Jin-Woong Lee, W. Park, Joonseo Park, Min-Young Cho, S. Singh, M. Pyo, K. Sohn
{"title":"Powder X‐Ray Diffraction Pattern Is All You Need for Machine‐Learning‐Based Symmetry Identification and Property Prediction","authors":"Byung Do Lee, Jin-Woong Lee, W. Park, Joonseo Park, Min-Young Cho, S. Singh, M. Pyo, K. Sohn","doi":"10.1002/aisy.202200042","DOIUrl":null,"url":null,"abstract":"Herein, data‐driven symmetry identification, property prediction, and low‐dimensional embedding from powder X‐Ray diffraction (XRD) patterns of inorganic crystal structure database (ICSD) and materials project (MP) entries are reported. For this purpose, a fully convolutional neural network (FCN), transformer encoder (T‐encoder), and variational autoencoder (VAE) are used. The results are compared to those obtained from a well‐established crystal graph convolutional neural network (CGCNN). A task‐specified small dataset that focuses on a narrow material system, knowledge (rule)‐based descriptor extraction, and significant data dimension reduction are not the main focus of this study. Conventional powder XRD patterns, which are most widely used in materials research, can be used as a significantly informative material descriptor for deep learning. Both the FCN and T‐encoder outperform the CGCNN for symmetry classification. For property prediction, the performance of the FCN concatenated with multilayer perceptron reaches the performance level of CGCNN. Machine‐learning‐driven material property prediction from the powder XRD pattern deserves appreciation because no such attempts have been made despite common XRD‐driven symmetry (and lattice size) prediction and phase identification. The ICSD and MP data are embedded in the 2D (or 3D) latent space through the VAE, and well‐separated clustering according to the symmetry and property is observed.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202200042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Herein, data‐driven symmetry identification, property prediction, and low‐dimensional embedding from powder X‐Ray diffraction (XRD) patterns of inorganic crystal structure database (ICSD) and materials project (MP) entries are reported. For this purpose, a fully convolutional neural network (FCN), transformer encoder (T‐encoder), and variational autoencoder (VAE) are used. The results are compared to those obtained from a well‐established crystal graph convolutional neural network (CGCNN). A task‐specified small dataset that focuses on a narrow material system, knowledge (rule)‐based descriptor extraction, and significant data dimension reduction are not the main focus of this study. Conventional powder XRD patterns, which are most widely used in materials research, can be used as a significantly informative material descriptor for deep learning. Both the FCN and T‐encoder outperform the CGCNN for symmetry classification. For property prediction, the performance of the FCN concatenated with multilayer perceptron reaches the performance level of CGCNN. Machine‐learning‐driven material property prediction from the powder XRD pattern deserves appreciation because no such attempts have been made despite common XRD‐driven symmetry (and lattice size) prediction and phase identification. The ICSD and MP data are embedded in the 2D (or 3D) latent space through the VAE, and well‐separated clustering according to the symmetry and property is observed.
粉末X射线衍射模式是所有你需要的机器学习为基础的对称识别和属性预测
本文报道了基于无机晶体结构数据库(ICSD)和材料计划(MP)条目的粉末X射线衍射(XRD)图谱的数据驱动对称识别、性能预测和低维嵌入。为此,使用了全卷积神经网络(FCN)、变压器编码器(T -编码器)和变分自编码器(VAE)。将所得结果与已建立的晶体图卷积神经网络(CGCNN)的结果进行了比较。任务指定的小型数据集侧重于狭窄的材料系统,基于知识(规则)的描述符提取和显著的数据降维不是本研究的主要焦点。传统的粉末XRD图谱是材料研究中应用最广泛的,可以作为深度学习中重要的材料描述符。FCN和T -编码器在对称分类方面都优于CGCNN。在属性预测方面,多层感知器连接的FCN的性能达到了CGCNN的性能水平。机器学习驱动的粉末XRD模式的材料性能预测值得赞赏,因为除了常见的XRD驱动的对称性(和晶格尺寸)预测和相识别之外,还没有这样的尝试。通过VAE将ICSD和MP数据嵌入到2D(或3D)潜在空间中,并根据对称性和性质观察到分离良好的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信