{"title":"Modal Analysis of a Discrete Tire Model with a Contact Patch and Rolling Conditions Using the Finite Difference Method","authors":"Faisal A. Alobaid, S. Taheri","doi":"10.3390/dynamics2020003","DOIUrl":null,"url":null,"abstract":"Obtaining the modal parameters of a tire with ground contact and rolling conditions represents a challenge due to the complex vibration characteristic behaviors that cause the distortion of the tire’s symmetry and the bifurcation phenomena of the natural frequencies. An in-plane rigid–elastic-coupled tire model was used to examine the 200 DOF finite difference method (FDM) modal analysis accuracy under non-ground contact and non-rotating conditions. The discrete in-plane rigid–elastic-coupled tire model was modified to include the contact patch restriction, centrifugal force and Coriolis effect, covering a range from 0 to 300 Hz. As a result, the influence of the contact patch and the rotating tire conditions on the natural frequencies and modes were obtained through modal analysis.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics2020003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Obtaining the modal parameters of a tire with ground contact and rolling conditions represents a challenge due to the complex vibration characteristic behaviors that cause the distortion of the tire’s symmetry and the bifurcation phenomena of the natural frequencies. An in-plane rigid–elastic-coupled tire model was used to examine the 200 DOF finite difference method (FDM) modal analysis accuracy under non-ground contact and non-rotating conditions. The discrete in-plane rigid–elastic-coupled tire model was modified to include the contact patch restriction, centrifugal force and Coriolis effect, covering a range from 0 to 300 Hz. As a result, the influence of the contact patch and the rotating tire conditions on the natural frequencies and modes were obtained through modal analysis.