Variably Scaled Persistence Kernels (VSPKs) for persistent homology applications

Stefano De Marchi , Federico Lot , Francesco Marchetti , Davide Poggiali
{"title":"Variably Scaled Persistence Kernels (VSPKs) for persistent homology applications","authors":"Stefano De Marchi ,&nbsp;Federico Lot ,&nbsp;Francesco Marchetti ,&nbsp;Davide Poggiali","doi":"10.1016/j.jcmds.2022.100050","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, various kernels have been proposed in the context of <em>persistent homology</em> to deal with <em>persistence diagrams</em> in supervised learning approaches. In this paper, we consider the idea of variably scaled kernels, for approximating functions and data, and we interpret it in the framework of persistent homology. We call them <em>Variably Scaled Persistence Kernels (VSPKs)</em>. These new kernels are then tested in different classification experiments. The obtained results show that they can improve the performance and the efficiency of existing standard kernels.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"4 ","pages":"Article 100050"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000153/pdfft?md5=2a0641fa2440016bd9baecb2f96d656e&pid=1-s2.0-S2772415822000153-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In recent years, various kernels have been proposed in the context of persistent homology to deal with persistence diagrams in supervised learning approaches. In this paper, we consider the idea of variably scaled kernels, for approximating functions and data, and we interpret it in the framework of persistent homology. We call them Variably Scaled Persistence Kernels (VSPKs). These new kernels are then tested in different classification experiments. The obtained results show that they can improve the performance and the efficiency of existing standard kernels.

用于持久同构应用程序的可变缩放持久化内核(vspk)
近年来,在持续同源的背景下,人们提出了各种各样的核算法来处理监督学习方法中的持续图。本文考虑了变尺度核的思想,用于逼近函数和数据,并在持久同调的框架下对其进行了解释。我们称之为可变缩放持久性内核(VSPKs)。然后在不同的分类实验中对这些新核进行测试。实验结果表明,它们可以提高现有标准核的性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信