{"title":"MULTI-LASER SCANNING CONFOCAL FLUORESCENT ENDOSCOPY SCHEME FOR SUBCELLULAR IMAGING (INVITED)","authors":"Xiaomin Zheng, Xiang Li, Qiaowen Lin, Jiajie Chen, Yueqing Gu, Yonghong Shao","doi":"10.2528/pier20092201","DOIUrl":null,"url":null,"abstract":"Fluorescence confocal laser scanning endomicroscopy is a novel tool combining confocal microscopy and endoscopy for in-vivo subcellular structure imaging with comparable resolution as the traditional microscope. In this paper, we propose a three-channel fluorescence confocal microscopy system based on fiber bundle and two excitation laser lines of 488 nm and 650 nm. Three fluorescent photomultiplier detecting channels of red, green and blue can record multi-color fluorescence signals from single sample site simultaneously. And its ability for in-vivo multi-channel fluorescence detection at subcellular level is verified. Moreover, the system has achieved an effective field of view of 154 μm in diameter with high resolution. With its multi-laser scanning, multi-channel detection, flexible probing, and in-vivo imaging abilities it will become a powerful tool in bio-chemical research and diagnostics, such as the investigation of the transport mechanism of nano-drugs in small animals.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"51 1","pages":"17-23"},"PeriodicalIF":6.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/pier20092201","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3
Abstract
Fluorescence confocal laser scanning endomicroscopy is a novel tool combining confocal microscopy and endoscopy for in-vivo subcellular structure imaging with comparable resolution as the traditional microscope. In this paper, we propose a three-channel fluorescence confocal microscopy system based on fiber bundle and two excitation laser lines of 488 nm and 650 nm. Three fluorescent photomultiplier detecting channels of red, green and blue can record multi-color fluorescence signals from single sample site simultaneously. And its ability for in-vivo multi-channel fluorescence detection at subcellular level is verified. Moreover, the system has achieved an effective field of view of 154 μm in diameter with high resolution. With its multi-laser scanning, multi-channel detection, flexible probing, and in-vivo imaging abilities it will become a powerful tool in bio-chemical research and diagnostics, such as the investigation of the transport mechanism of nano-drugs in small animals.
期刊介绍:
Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.