Polyacrylonitrile-Based Composite Carbon Nanofibers with Tailored Microporosity

Q3 Mathematics
E. S. Vtyurina, I. Ponomarev, A. G. Buyanovskaya, I. I. Ponomarev, K. Skupov
{"title":"Polyacrylonitrile-Based Composite Carbon Nanofibers with Tailored Microporosity","authors":"E. S. Vtyurina, I. Ponomarev, A. G. Buyanovskaya, I. I. Ponomarev, K. Skupov","doi":"10.18698/1812-3368-2023-2-160-172","DOIUrl":null,"url":null,"abstract":"Carbon nanofibers are currently used in many applications including electrochemical power sources, particularly, fuel cells. Their properties are highly dependent on the micro- and mesoporous structure. Here we provide a porosimetric analysis of the polyacrylonitrile-based electrospun composite Zr- and Ni-containing carbon nanofiber mats by N2 and CO2 adsorption methods for the first time. It was found that pyrolysis temperature affects specific surface area and volume: the values increase for the sample pyrolyzed at 900 °C compared with the initial stabilized nanofibers (300 °C, air) according to the Dubinin --- Radushkevich, non-local density functional theory (NLDFT) and grand canonical Monte-Carlo methods (GCMC). For higher pyrolysis temperatures (1000 and 1200 °C), the porosimetric parameters decrease compared with the one pyrolyzed at 900 °C. According to the NLDFT and GCMC pore size distribution, the difference for pyrolyzed samples is mostly related to a sharp decrease in the specific surface area for pores with a size of ~ 0.5 nm and an increase for pores at 0.55--0.8 nm compared with the initial stabilized sample. The study demonstrates a way to adjust porosimetric parameters depending on the pyrolysis conditions of the nanofiber mats, since it can improve characteristics of such type of carbon materials in electrochemical devices","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/1812-3368-2023-2-160-172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanofibers are currently used in many applications including electrochemical power sources, particularly, fuel cells. Their properties are highly dependent on the micro- and mesoporous structure. Here we provide a porosimetric analysis of the polyacrylonitrile-based electrospun composite Zr- and Ni-containing carbon nanofiber mats by N2 and CO2 adsorption methods for the first time. It was found that pyrolysis temperature affects specific surface area and volume: the values increase for the sample pyrolyzed at 900 °C compared with the initial stabilized nanofibers (300 °C, air) according to the Dubinin --- Radushkevich, non-local density functional theory (NLDFT) and grand canonical Monte-Carlo methods (GCMC). For higher pyrolysis temperatures (1000 and 1200 °C), the porosimetric parameters decrease compared with the one pyrolyzed at 900 °C. According to the NLDFT and GCMC pore size distribution, the difference for pyrolyzed samples is mostly related to a sharp decrease in the specific surface area for pores with a size of ~ 0.5 nm and an increase for pores at 0.55--0.8 nm compared with the initial stabilized sample. The study demonstrates a way to adjust porosimetric parameters depending on the pyrolysis conditions of the nanofiber mats, since it can improve characteristics of such type of carbon materials in electrochemical devices
具有定制微孔度的聚丙烯腈基复合纳米碳纤维
碳纳米纤维目前在许多方面都有应用,包括电化学电源,特别是燃料电池。它们的性能高度依赖于微孔和介孔结构。本文首次采用氮气吸附法和CO2吸附法对聚丙烯腈基静电纺复合含锆和含镍碳纳米纤维垫进行了孔隙度分析。根据Dubinin—Radushkevich、非局部密度泛函数理论(NLDFT)和大正则蒙特卡罗方法(GCMC),发现热解温度对纳米纤维的比表面积和体积有影响:900℃热解样品比初始稳定纳米纤维(300℃,空气)的比表面积和体积增大。在较高的热解温度下(1000℃和1200℃),孔隙率参数比在900℃下热解的孔隙率参数降低。根据NLDFT和GCMC的孔径分布,与初始稳定样品相比,热解样品的差异主要与~ 0.5 nm孔的比表面积急剧下降和0.55 ~ 0.8 nm孔的比表面积增加有关。该研究展示了一种根据纳米纤维垫的热解条件调整孔隙率参数的方法,因为它可以改善电化学装置中这类碳材料的特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
40
期刊介绍: The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信