Effective André–Oort for non-compact curves in Hilbert modular varieties

Pub Date : 2021-01-16 DOI:10.5802/CRMATH.177
Gal Binyamini, D. Masser
{"title":"Effective André–Oort for non-compact curves in Hilbert modular varieties","authors":"Gal Binyamini, D. Masser","doi":"10.5802/CRMATH.177","DOIUrl":null,"url":null,"abstract":"In the proofs of most cases of the André-Oort conjecture, there are two different steps whose effectivity is unclear: the use of generalizations of Brauer-Siegel and the use of Pila-Wilkie. Only the case of curves in C is currently known effectively (by other methods). We give an effective proof of André-Oort for non-compact curves in every Hilbert modular surface and every Hilbert modular variety of odd genus (under a minor generic simplicity condition). In particular we show that in these cases the first step may be replaced by the endomorphism estimates of Wüstholz and the second author together with the specialization method of André via G-functions, and the second step may be effectivized using the Q-functions of Novikov, Yakovenko and the first author.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In the proofs of most cases of the André-Oort conjecture, there are two different steps whose effectivity is unclear: the use of generalizations of Brauer-Siegel and the use of Pila-Wilkie. Only the case of curves in C is currently known effectively (by other methods). We give an effective proof of André-Oort for non-compact curves in every Hilbert modular surface and every Hilbert modular variety of odd genus (under a minor generic simplicity condition). In particular we show that in these cases the first step may be replaced by the endomorphism estimates of Wüstholz and the second author together with the specialization method of André via G-functions, and the second step may be effectivized using the Q-functions of Novikov, Yakovenko and the first author.
分享
查看原文
Hilbert模变中非紧曲线的有效andr - oort
在大多数andr - oort猜想的证明中,有两个不同的步骤,其有效性尚不清楚:使用Brauer-Siegel的概括和使用Pila-Wilkie的概括。目前只有C曲线的情况是有效的(通过其他方法)。我们给出了非紧曲线在每一个Hilbert模曲面和每一个奇属Hilbert模变体上的andr - oort的有效证明(在一个次要的一般简单性条件下)。特别地,我们证明了在这些情况下,第一步可以用w stholz和第二作者的自同态估计以及andr通过g函数的专门化方法来代替,第二步可以用Novikov、Yakovenko和第一作者的q函数来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信