Multi-task learning for boosting with application to web search ranking

O. Chapelle, Pannagadatta K. Shivaswamy, Srinivas Vadrevu, Kilian Q. Weinberger, Ya Zhang, Belle L. Tseng
{"title":"Multi-task learning for boosting with application to web search ranking","authors":"O. Chapelle, Pannagadatta K. Shivaswamy, Srinivas Vadrevu, Kilian Q. Weinberger, Ya Zhang, Belle L. Tseng","doi":"10.1145/1835804.1835953","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel algorithm for multi-task learning with boosted decision trees. We learn several different learning tasks with a joint model, explicitly addressing the specifics of each learning task with task-specific parameters and the commonalities between them through shared parameters. This enables implicit data sharing and regularization. We evaluate our learning method on web-search ranking data sets from several countries. Here, multitask learning is particularly helpful as data sets from different countries vary largely in size because of the cost of editorial judgments. Our experiments validate that learning various tasks jointly can lead to significant improvements in performance with surprising reliability.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

In this paper we propose a novel algorithm for multi-task learning with boosted decision trees. We learn several different learning tasks with a joint model, explicitly addressing the specifics of each learning task with task-specific parameters and the commonalities between them through shared parameters. This enables implicit data sharing and regularization. We evaluate our learning method on web-search ranking data sets from several countries. Here, multitask learning is particularly helpful as data sets from different countries vary largely in size because of the cost of editorial judgments. Our experiments validate that learning various tasks jointly can lead to significant improvements in performance with surprising reliability.
多任务学习提高与应用程序的网页搜索排名
本文提出了一种基于增强决策树的多任务学习算法。我们使用联合模型学习几个不同的学习任务,通过任务特定参数明确地处理每个学习任务的细节,并通过共享参数处理它们之间的共性。这支持隐式数据共享和正则化。我们在来自几个国家的网络搜索排名数据集上评估了我们的学习方法。在这里,多任务学习特别有用,因为来自不同国家的数据集由于编辑判断的成本而在规模上有很大差异。我们的实验证明,联合学习各种任务可以显著提高性能,并且具有惊人的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信