New binary one-generator quasi-cyclic codes

R. Daskalov, P. Hristov
{"title":"New binary one-generator quasi-cyclic codes","authors":"R. Daskalov, P. Hristov","doi":"10.1109/TIT.2003.819337","DOIUrl":null,"url":null,"abstract":"Sixteen new binary quasi-cyclic linear codes improving the best known lower bounds on minimum distance in Brouwer's tables are constructed. The parameters of these codes are [102, 26, 32], [102, 27, 30], [142, 35, 40], [142, 36, 38] [146, 36, 40], [170, 16, 72], [170, 20, 66], [170, 33, 52] [170, 36, 50], [178, 33, 56], [178, 34, 54], [182, 27, 64] [182, 36, 56], [186, 17, 76], [210, 23, 80], [254, 22, 102] Sixty cyclic and thirty quasi-cyclic codes, which attain the respective bounds in Brouwer's table and are not included in Chen's table are presented as well.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"12 1","pages":"3001-3005"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.819337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Sixteen new binary quasi-cyclic linear codes improving the best known lower bounds on minimum distance in Brouwer's tables are constructed. The parameters of these codes are [102, 26, 32], [102, 27, 30], [142, 35, 40], [142, 36, 38] [146, 36, 40], [170, 16, 72], [170, 20, 66], [170, 33, 52] [170, 36, 50], [178, 33, 56], [178, 34, 54], [182, 27, 64] [182, 36, 56], [186, 17, 76], [210, 23, 80], [254, 22, 102] Sixty cyclic and thirty quasi-cyclic codes, which attain the respective bounds in Brouwer's table and are not included in Chen's table are presented as well.
新的二进制单生成准循环码
构造了16个新的二元拟循环线性码,改进了Brouwer表中已知的最小距离下界。这些码的参数为[102,26,32],[102,27,30],[142,35,40],[142,36,38][146,36,40],[170,16,72],[170,20,66],[170,33,52][170,36,50],[178,33,56],[178,33,54],[182,27,64][182,36,56],[186,17,76],[210,23,80],[254,22,102],并给出了60个循环码和30个准循环码,它们在Brouwer表中达到各自的界,不包括在Chen表中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信