Dynamic Virtual Machine Consolidation: A Multi Agent Learning Approach

S. Masoumzadeh, H. Hlavacs
{"title":"Dynamic Virtual Machine Consolidation: A Multi Agent Learning Approach","authors":"S. Masoumzadeh, H. Hlavacs","doi":"10.1109/ICAC.2015.17","DOIUrl":null,"url":null,"abstract":"Distributed dynamic virtual machine (VM) consolidation (DDVMC) is a virtual machine management strategy that uses a distributed rather than a centralized algorithm for finding a right balance between saving energy and attaining best possible performance in cloud data center. One of the significant challenges in DDVMC is that the optimality of this strategy is highly dependent on the quality of the decision-making process. In this paper we propose a cooperative multi agent learning approach to tackle this challenge. The experimental results show that our approach yields far better results w.r.t. The energy-performance tradeoff in cloud data centers in comparison to state-of-the-art algorithms.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"121 1","pages":"161-162"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Distributed dynamic virtual machine (VM) consolidation (DDVMC) is a virtual machine management strategy that uses a distributed rather than a centralized algorithm for finding a right balance between saving energy and attaining best possible performance in cloud data center. One of the significant challenges in DDVMC is that the optimality of this strategy is highly dependent on the quality of the decision-making process. In this paper we propose a cooperative multi agent learning approach to tackle this challenge. The experimental results show that our approach yields far better results w.r.t. The energy-performance tradeoff in cloud data centers in comparison to state-of-the-art algorithms.
动态虚拟机整合:多智能体学习方法
分布式动态虚拟机(VM)整合(DDVMC)是一种虚拟机管理策略,它使用分布式而不是集中式算法来在云数据中心中找到节能和获得最佳性能之间的适当平衡。DDVMC面临的一个重大挑战是,该策略的最优性高度依赖于决策过程的质量。在本文中,我们提出了一种合作多智能体学习方法来解决这一挑战。实验结果表明,与最先进的算法相比,我们的方法在云数据中心的能源性能权衡方面产生了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信