A novel approach to form Normal Distribution of Medical Image Segmentation based on multiple doctors' annotations.

IF 0.4 Q4 PSYCHOLOGY
Avances en Psicologia Latinoamericana Pub Date : 2022-02-01 Epub Date: 2022-04-04 DOI:10.1117/12.2611973
Zicong Zhou, Guojun Liao
{"title":"A novel approach to form Normal Distribution of Medical Image Segmentation based on multiple doctors' annotations.","authors":"Zicong Zhou, Guojun Liao","doi":"10.1117/12.2611973","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image segmentation annotated by experts provides the labeled data sets for many scientific researches. However, due to the unevenly experienced backgrounds of the experts and limited numbers of patients with certain diseases or illnesses, not only do such labeled data sets have smaller samples but their quality and normality also can range in wide variabilities and be ambiguous. In practice, these segmentations are usually assigned to be the ground truths for the scientific studies, so it may undermine the trustworthiness of the resulting findings. Therefore, it is meaningful to consider how to give a more unified opinion of the annotations among different experts. In this paper, a novel approach to form normal distributions of segmentation is proposed based on multiple doctors' annotations for the same patient. The proposed approach is developed through the following steps: (1) utilize a framework<sup>7</sup> of averaging images to construct an averaged annotation based on different given annotations; (2) determine the image registration deformations from the averaged annotation to the given annotations; (3) build a joint multivariate Gaussian distribution over the logorithm of Jacobian determinants and curls of the registration deformations; lastly, (4) simulate a normal distribution of segmentation by the joint Gaussian distribution of registration deformation. This work translates the problem of forming a normal distribution of the image segmentation into a problem of forming joint Gaussian distribution of image registration deformations, which the latter can be reasoned by Jacobian determinant (models local size of pixel cells) and curl (models local rotation of pixel cells) information. In the following sections, a detailed walk-through of the proposed approach is provided along with its analytical mathematics and numerical examples for its effectiveness. A synthetic example of 3 manually defined label image is made to show how to construct a mean label image, and an example of a real cancer image annotated by 3 doctors demonstrates the formation of the normal distribution and the effectiveness of the propose method.</p>","PeriodicalId":54162,"journal":{"name":"Avances en Psicologia Latinoamericana","volume":"33 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avances en Psicologia Latinoamericana","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/12.2611973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image segmentation annotated by experts provides the labeled data sets for many scientific researches. However, due to the unevenly experienced backgrounds of the experts and limited numbers of patients with certain diseases or illnesses, not only do such labeled data sets have smaller samples but their quality and normality also can range in wide variabilities and be ambiguous. In practice, these segmentations are usually assigned to be the ground truths for the scientific studies, so it may undermine the trustworthiness of the resulting findings. Therefore, it is meaningful to consider how to give a more unified opinion of the annotations among different experts. In this paper, a novel approach to form normal distributions of segmentation is proposed based on multiple doctors' annotations for the same patient. The proposed approach is developed through the following steps: (1) utilize a framework7 of averaging images to construct an averaged annotation based on different given annotations; (2) determine the image registration deformations from the averaged annotation to the given annotations; (3) build a joint multivariate Gaussian distribution over the logorithm of Jacobian determinants and curls of the registration deformations; lastly, (4) simulate a normal distribution of segmentation by the joint Gaussian distribution of registration deformation. This work translates the problem of forming a normal distribution of the image segmentation into a problem of forming joint Gaussian distribution of image registration deformations, which the latter can be reasoned by Jacobian determinant (models local size of pixel cells) and curl (models local rotation of pixel cells) information. In the following sections, a detailed walk-through of the proposed approach is provided along with its analytical mathematics and numerical examples for its effectiveness. A synthetic example of 3 manually defined label image is made to show how to construct a mean label image, and an example of a real cancer image annotated by 3 doctors demonstrates the formation of the normal distribution and the effectiveness of the propose method.

基于多名医生注释的医学图像分割正态分布新方法。
由专家标注的医学影像分割为许多科学研究提供了标注数据集。然而,由于专家的经验背景参差不齐,且某些疾病或病症的患者数量有限,这些标注数据集不仅样本较少,而且其质量和规范性也可能存在较大差异和模糊性。在实践中,这些分段通常会被指定为科学研究的基本事实,因此可能会降低研究结果的可信度。因此,考虑如何让不同专家对注释的意见更加统一是很有意义的。本文提出了一种基于多位医生对同一患者的注释来形成分割正态分布的新方法。本文提出的方法是通过以下步骤开发的:(1) 利用图像平均化框架7,根据不同的给定注释构建平均注释;(2) 确定从平均注释到给定注释的图像配准变形;(3) 建立配准变形的雅各布行列式对数和卷曲的联合多元高斯分布;最后,(4) 通过配准变形的联合高斯分布模拟分割的正态分布。这项工作将图像分割的正态分布形成问题转化为图像配准变形的联合高斯分布形成问题,后者可通过雅各布行列式(模拟像素单元的局部大小)和卷曲度(模拟像素单元的局部旋转)信息进行推理。在下面的章节中,我们将详细介绍所提出的方法,并通过数学分析和数值示例来证明其有效性。以 3 幅人工定义的标签图像为例,说明如何构建平均标签图像;以 3 位医生标注的真实癌症图像为例,说明正态分布的形成和所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
35
审稿时长
23 weeks
期刊介绍: La revista Avances en Psicología Latinoamericana es una revista con evaluación por pares, que publica artículos de carácter integrador en todas las áreas de la psicología. Incluye contribuciones empíricas, teóricas originales y revisiones en profundidad. Los artículos se publican en español, portugués, inglés e italiano con resumen y palabras clave (obtenidas del Thesaurus de la American Psychological Association) en español e inglés. Los artículos enviados deben seguir las normas del Manual de Estilo de Publicaciones de la American Psychological Association (quinta edición, 2001) en lo que respecta a su presentación formal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信