Simultaneous Localization and Calibration (SLAC) Methods for a Train-Mounted Magnetometer

IF 3.1 3区 地球科学 Q1 ENGINEERING, AEROSPACE
B. Siebler, A. Lehner, S. Sand, U. Hanebeck
{"title":"Simultaneous Localization and Calibration (SLAC) Methods for a Train-Mounted Magnetometer","authors":"B. Siebler, A. Lehner, S. Sand, U. Hanebeck","doi":"10.33012/navi.557","DOIUrl":null,"url":null,"abstract":"and calibration (SLAC) algorithm based on a Rao-Blackwellized particle filter that enables magnetic train localization using only uncalibrated magnetometer measurements. In this paper, a lower-complexity version of the SLAC algorithm is proposed that only estimates a subset of calibration parameters. An evaluation compares the full and reduced SLAC approach to a particle filter in which the magnetometer is pre-calibrated with a fixed set of parameters. The results show a clear advantage for both SLAC approaches and that the SLAC algorithm with a reduced set of calibration parameters achieves the same performance as the one with a full set of parameters.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33012/navi.557","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

and calibration (SLAC) algorithm based on a Rao-Blackwellized particle filter that enables magnetic train localization using only uncalibrated magnetometer measurements. In this paper, a lower-complexity version of the SLAC algorithm is proposed that only estimates a subset of calibration parameters. An evaluation compares the full and reduced SLAC approach to a particle filter in which the magnetometer is pre-calibrated with a fixed set of parameters. The results show a clear advantage for both SLAC approaches and that the SLAC algorithm with a reduced set of calibration parameters achieves the same performance as the one with a full set of parameters.
列车磁强计的同步定位与标定方法
以及基于rao - blackwell化粒子滤波的校准(SLAC)算法,该算法仅使用未校准的磁力计测量值即可实现磁列定位。本文提出了一种较低复杂度的SLAC算法,该算法只估计校准参数的子集。一项评估将完整的和简化的SLAC方法与粒子滤波方法进行了比较,其中磁力计是用一组固定的参数预先校准的。结果表明,两种SLAC方法都具有明显的优势,并且使用减少的校准参数集的SLAC算法与使用完整参数集的SLAC算法具有相同的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Navigation-Journal of the Institute of Navigation
Navigation-Journal of the Institute of Navigation ENGINEERING, AEROSPACE-REMOTE SENSING
CiteScore
5.60
自引率
13.60%
发文量
31
期刊介绍: NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信