{"title":"K-CAE: Image Classification Using Convolutional AutoEncoder Pre-Training and K-means Clustering","authors":"Aida Chefrour, Samia Drissi","doi":"10.31449/inf.v47i7.4499","DOIUrl":null,"url":null,"abstract":"The work presented in this paper is in the general framework of classification using deep learning and, more precisely, that of convolutional Autoencoder. In particular, this last proposes an alternative for the processing of high-dimensional data, to facilitate their classification. In this paper, we propose the incorporation of convolutional autoencoders as a general unsupervised learning data dimension reduction method for creating robust and compressed feature representations for better storage and transmission to the classification process to improve K-means performance on image classification tasks. The experimental results on three image databases, MNIST, Fashion-MNIST, and CIFAR-10, show that the proposed method significantly outperforms deep clustering models in terms of clustering quality.","PeriodicalId":35802,"journal":{"name":"Informatica (Slovenia)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica (Slovenia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31449/inf.v47i7.4499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The work presented in this paper is in the general framework of classification using deep learning and, more precisely, that of convolutional Autoencoder. In particular, this last proposes an alternative for the processing of high-dimensional data, to facilitate their classification. In this paper, we propose the incorporation of convolutional autoencoders as a general unsupervised learning data dimension reduction method for creating robust and compressed feature representations for better storage and transmission to the classification process to improve K-means performance on image classification tasks. The experimental results on three image databases, MNIST, Fashion-MNIST, and CIFAR-10, show that the proposed method significantly outperforms deep clustering models in terms of clustering quality.
期刊介绍:
Informatica is an international refereed journal with its base in Europe. It has entered its 33th year of publication. It publishes papers addressing all issues of interests to computer professionals: from scientific and technical to educational, commercial and industrial. It also publishes critical examinations of existing publications, news about major practical achievements and innovations in the computer and information industry, as well as conference announcements and reports.