Knot Floer homology and the unknotting number

IF 2 1区 数学
Akram Alishahi, Eaman Eftekhary
{"title":"Knot Floer homology and the unknotting number","authors":"Akram Alishahi, Eaman Eftekhary","doi":"10.2140/gt.2020.24.2435","DOIUrl":null,"url":null,"abstract":"Given a knot K in S^3, let u^-(K) (respectively, u^+(K)) denote the minimum number of negative (respectively, positive) crossing changes among all unknotting sequences for K. We use knot Floer homology to construct the invariants l^-(K), l^+(K) and l(K), which give lower bounds on u^-(K), u^+(K) and the unknotting number u(K), respectively. The invariant l(K) only vanishes for the unknot, and is greater than or equal to the \\nu^-(K). Moreover, the difference l(K)-\\nu^-(K) can be arbitrarily large. We also present several applications towards bounding the unknotting number, the alteration number and the Gordian distance.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2018-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2020.24.2435","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Given a knot K in S^3, let u^-(K) (respectively, u^+(K)) denote the minimum number of negative (respectively, positive) crossing changes among all unknotting sequences for K. We use knot Floer homology to construct the invariants l^-(K), l^+(K) and l(K), which give lower bounds on u^-(K), u^+(K) and the unknotting number u(K), respectively. The invariant l(K) only vanishes for the unknot, and is greater than or equal to the \nu^-(K). Moreover, the difference l(K)-\nu^-(K) can be arbitrarily large. We also present several applications towards bounding the unknotting number, the alteration number and the Gordian distance.
结花同源性和解结数
给定S^3中的一个结点K,令u^-(K)(分别为u^+(K))表示K的所有解结序列中负(分别为正)交叉变化的最小个数。我们利用结花同调构造了l^-(K)、l^+(K)和l(K)不变量,分别给出了u^-(K)、u^+(K)和解结数u(K)的下界。不变量l(K)只在解结时消失,并且大于等于\nu^-(K)而且,l(K)- nu^-(K)的差值可以任意大。在解结数、改变数和戈氏距离的限定方面也给出了几种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信