CHAPTER 6. Tocopheryl Phosphate

A. Azzi
{"title":"CHAPTER 6. Tocopheryl Phosphate","authors":"A. Azzi","doi":"10.1039/9781788016216-00075","DOIUrl":null,"url":null,"abstract":"Older studies of the phosphoric acid ester of α-tocopherol (TP) in enzymes and animal models have given no conclusive results. More recently, the molecule has been the object of new scientific attention as an extension to the renewed popularity of vitamin E (α-tocopherol). α-Tocopherol is a micronutrient that is needed to prevent a form of cerebellar ataxia, but several alleged functions have been attributed to it, including protection against neurodegeneration, atherosclerosis, cancer and aging. Initially, the biological function of TP was seen as a pro-vitamin E capable of releasing α-tocopherol in the body. Subsequent studies have indicated that the nanomolar amount of TP in the body is not compatible with functioning as a reserve of vitamin E, whose concentration in plasma is in the micromolar order. On the other hand, its existence in humans, animals and plants has prompted studies on TP's molecular functions, and these have revealed that it can be synthesized and hydrolyzed in cells and in animals. The enzymes responsible for α-tocopherol kinase and tocopheryl phosphate phosphatase cellular activities have not been purified. TP inhibits cell proliferation and regulates gene expression more potently than α-tocopherol; furthermore, some genes are exclusively regulated by TP. These signaling effects of TP are in connection with phosphatidyl inositol kinase. In animal models, TP has shown more potency than α-tocopherol against atherosclerosis and inflammation. TP has been proposed to be an activated form of α-tocopherol.","PeriodicalId":23674,"journal":{"name":"Vitamin E","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamin E","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016216-00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Older studies of the phosphoric acid ester of α-tocopherol (TP) in enzymes and animal models have given no conclusive results. More recently, the molecule has been the object of new scientific attention as an extension to the renewed popularity of vitamin E (α-tocopherol). α-Tocopherol is a micronutrient that is needed to prevent a form of cerebellar ataxia, but several alleged functions have been attributed to it, including protection against neurodegeneration, atherosclerosis, cancer and aging. Initially, the biological function of TP was seen as a pro-vitamin E capable of releasing α-tocopherol in the body. Subsequent studies have indicated that the nanomolar amount of TP in the body is not compatible with functioning as a reserve of vitamin E, whose concentration in plasma is in the micromolar order. On the other hand, its existence in humans, animals and plants has prompted studies on TP's molecular functions, and these have revealed that it can be synthesized and hydrolyzed in cells and in animals. The enzymes responsible for α-tocopherol kinase and tocopheryl phosphate phosphatase cellular activities have not been purified. TP inhibits cell proliferation and regulates gene expression more potently than α-tocopherol; furthermore, some genes are exclusively regulated by TP. These signaling effects of TP are in connection with phosphatidyl inositol kinase. In animal models, TP has shown more potency than α-tocopherol against atherosclerosis and inflammation. TP has been proposed to be an activated form of α-tocopherol.
第六章。生育酚磷酸
以往对α-生育酚(TP)的磷酸酯在酶和动物模型中的作用的研究没有得出结论性的结果。最近,作为维生素E (α-生育酚)重新流行的延伸,这种分子已经成为新的科学关注的对象。α-生育酚是一种预防小脑共济失调所需的微量营养素,但它有几种据称的功能,包括防止神经变性、动脉粥样硬化、癌症和衰老。最初,TP的生物学功能被认为是一种能够在体内释放α-生育酚的维生素E原。随后的研究表明,TP在体内的纳摩尔量与维生素E的储备功能不相容,其在血浆中的浓度为微摩尔量级。另一方面,由于其在人类、动物和植物中的存在,对TP的分子功能进行了研究,揭示了TP在细胞和动物体内都可以合成和水解。负责α-生育酚激酶和生育酚磷酸磷酸酶细胞活性的酶尚未纯化。TP比α-生育酚更能抑制细胞增殖和调节基因表达;此外,有些基因仅受TP调控。TP的这些信号作用与磷脂酰肌醇激酶有关。在动物模型中,TP比α-生育酚具有更强的抗动脉粥样硬化和炎症的效力。TP被认为是α-生育酚的一种活化形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信