Maximal knotless graphs

IF 0.6 3区 数学 Q3 MATHEMATICS
L. Eakins, Thomas Fleming, T. Mattman
{"title":"Maximal knotless graphs","authors":"L. Eakins, Thomas Fleming, T. Mattman","doi":"10.2140/agt.2023.23.1831","DOIUrl":null,"url":null,"abstract":"A graph is maximal knotless if it is edge maximal for the property of knotless embedding in $R^3$. We show that such a graph has at least $\\frac74 |V|$ edges, and construct an infinite family of maximal knotless graphs with $|E|<\\frac52|V|$. With the exception of $|E| = 22$, we show that for any $|E| \\geq 20$ there exists a maximal knotless graph of size $|E|$. We classify the maximal knotless graphs through nine vertices and 20 edges. We determine which of these maxnik graphs are the clique sum of smaller graphs and construct an infinite family of maxnik graphs that are not clique sums.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"3 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.1831","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

A graph is maximal knotless if it is edge maximal for the property of knotless embedding in $R^3$. We show that such a graph has at least $\frac74 |V|$ edges, and construct an infinite family of maximal knotless graphs with $|E|<\frac52|V|$. With the exception of $|E| = 22$, we show that for any $|E| \geq 20$ there exists a maximal knotless graph of size $|E|$. We classify the maximal knotless graphs through nine vertices and 20 edges. We determine which of these maxnik graphs are the clique sum of smaller graphs and construct an infinite family of maxnik graphs that are not clique sums.
最大无结图
如果图在$R^3$中无结嵌入的性质是边极大,则该图为最大无结图。我们证明了这样的图至少有$\frac74 |V|$条边,并构造了一个具有$|E|<\frac52|V|$条边的无限极大无结图族。除$|E| = 22$外,我们证明了对于任意$|E| \geq 20$存在一个大小为$|E|$的最大无结图。我们通过9个顶点和20条边对最大无结图进行分类。我们确定了这些maxnik图中的哪些是较小图的团和,并构造了一个无限族的maxnik图,它们不是团和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信