{"title":"Roost use and thermoregulation by female Australian long-eared bats (Nyctophilus geoffroyi and N. gouldi) during pregnancy and lactation1","authors":"C. Turbill, G. Körtner, F. Geiser","doi":"10.1071/ZO20036","DOIUrl":null,"url":null,"abstract":"Abstract. Small insectivorous bats commonly use torpor while day-roosting, even in summer. However, reproductive female bats are believed to benefit from avoiding torpor because a constant, elevated body temperature maximises the rate of offspring growth, which could increase offspring survival. We used temperature-sensitive radio-transmitters to locate roosts and document the thermal biology of pregnant and lactating females of Nyctophilus geoffroyi (9 g) and N. gouldi (11 g) at a woodland in a cool temperate climate. Unlike males, reproductive female Nyctophilus spp. roosted as small groups (<25) within insulated tree cavities. Roost switching occurred every 3.7 ± 1.5 (N. geoffroyi) or 1.7 ± 0.8 days (N. gouldi), and radio-tagged individuals roosted together and apart on different days. Skin temperature during roosting was most often between 32 and 36°C, and torpor was used infrequently. Male Nyctophilus have been shown in previous studies to use torpor daily during summer. These contrasting torpor patterns likely reflect the warmed cavities occupied by maternity colonies and the thermally unstable shallow crevices occupied by individual males. Our results support the hypothesis that availability of thermally suitable roosts will influence thermoregulatory patterns of reproductive females and hence the growth rates and survival of their offspring. Thus, it is important to conserve woodland habitat with trees in a range of decay stages to provide opportunities for selection and movement among roost trees by reproductive female bats.","PeriodicalId":55420,"journal":{"name":"Australian Journal of Zoology","volume":"16 1","pages":"339 - 345"},"PeriodicalIF":1.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/ZO20036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. Small insectivorous bats commonly use torpor while day-roosting, even in summer. However, reproductive female bats are believed to benefit from avoiding torpor because a constant, elevated body temperature maximises the rate of offspring growth, which could increase offspring survival. We used temperature-sensitive radio-transmitters to locate roosts and document the thermal biology of pregnant and lactating females of Nyctophilus geoffroyi (9 g) and N. gouldi (11 g) at a woodland in a cool temperate climate. Unlike males, reproductive female Nyctophilus spp. roosted as small groups (<25) within insulated tree cavities. Roost switching occurred every 3.7 ± 1.5 (N. geoffroyi) or 1.7 ± 0.8 days (N. gouldi), and radio-tagged individuals roosted together and apart on different days. Skin temperature during roosting was most often between 32 and 36°C, and torpor was used infrequently. Male Nyctophilus have been shown in previous studies to use torpor daily during summer. These contrasting torpor patterns likely reflect the warmed cavities occupied by maternity colonies and the thermally unstable shallow crevices occupied by individual males. Our results support the hypothesis that availability of thermally suitable roosts will influence thermoregulatory patterns of reproductive females and hence the growth rates and survival of their offspring. Thus, it is important to conserve woodland habitat with trees in a range of decay stages to provide opportunities for selection and movement among roost trees by reproductive female bats.
期刊介绍:
Australian Journal of Zoology is an international journal publishing contributions on evolutionary, molecular and comparative zoology. The journal focuses on Australasian fauna but also includes high-quality research from any region that has broader practical or theoretical relevance or that demonstrates a conceptual advance to any aspect of zoology. Subject areas include, but are not limited to: anatomy, physiology, molecular biology, genetics, reproductive biology, developmental biology, parasitology, morphology, behaviour, ecology, zoogeography, systematics and evolution.
Australian Journal of Zoology is a valuable resource for professional zoologists, research scientists, resource managers, environmental consultants, students and amateurs interested in any aspect of the scientific study of animals.
Australian Journal of Zoology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.