Filtering in adaptive control of distributed parameter bioreactors in the presence of noisy measurements

J Czeczot , M Metzger , J.P Babary , M Nihtilä
{"title":"Filtering in adaptive control of distributed parameter bioreactors in the presence of noisy measurements","authors":"J Czeczot ,&nbsp;M Metzger ,&nbsp;J.P Babary ,&nbsp;M Nihtilä","doi":"10.1016/S0928-4869(00)00011-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with simulation experiments on the model-based adaptive control of the distributed parameter bioreactor in the presence of the measurement noise. Since in such cases the adaptive controller itself is not able to ensure good control performance, there is a need to propose more sophisticated application. It is based on the first-order digital low-pass filters and allows us to decrease the influence of the measurement noise on the control performance. In order to decrease this influence it is possible to adjust three parameters of the application: controller tuning parameter, forgetting factor for the estimation of the substrate consumption rate and time constant of the low-pass filters. Simulation results, presented in this paper, have been obtained for different values of these parameters and, based on these results, it is possible to propose a robust application for the adaptive control of the bioreactor with optimally chosen values of the adjustable parameters. This application can be suggested to be applied in the adaptive control of a real industrial distributed parameter bioreactor with noisy measurement data.</p></div>","PeriodicalId":101162,"journal":{"name":"Simulation Practice and Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0928-4869(00)00011-2","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Practice and Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928486900000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper deals with simulation experiments on the model-based adaptive control of the distributed parameter bioreactor in the presence of the measurement noise. Since in such cases the adaptive controller itself is not able to ensure good control performance, there is a need to propose more sophisticated application. It is based on the first-order digital low-pass filters and allows us to decrease the influence of the measurement noise on the control performance. In order to decrease this influence it is possible to adjust three parameters of the application: controller tuning parameter, forgetting factor for the estimation of the substrate consumption rate and time constant of the low-pass filters. Simulation results, presented in this paper, have been obtained for different values of these parameters and, based on these results, it is possible to propose a robust application for the adaptive control of the bioreactor with optimally chosen values of the adjustable parameters. This application can be suggested to be applied in the adaptive control of a real industrial distributed parameter bioreactor with noisy measurement data.

分布参数生物反应器在噪声测量下的滤波自适应控制
本文对存在测量噪声的分布式参数生物反应器进行了基于模型的自适应控制仿真实验。由于在这种情况下,自适应控制器本身不能保证良好的控制性能,因此有必要提出更复杂的应用。它基于一阶数字低通滤波器,使我们能够减少测量噪声对控制性能的影响。为了减少这种影响,可以调整应用程序的三个参数:控制器调谐参数,用于估计基板消耗率的遗忘因子和低通滤波器的时间常数。本文给出了这些参数的不同值的仿真结果,并基于这些结果,可以为生物反应器的自适应控制提供鲁棒应用,以选择最优的可调参数值。该方法可应用于实际工业分布式参数生物反应器的自适应控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信