Decentralized Massive MIMO Uplink Signal Estimation by Binary Multistep Synthesis

Pascal Seidel, S. Paul, Jochen Rust
{"title":"Decentralized Massive MIMO Uplink Signal Estimation by Binary Multistep Synthesis","authors":"Pascal Seidel, S. Paul, Jochen Rust","doi":"10.1109/IEEECONF44664.2019.9048772","DOIUrl":null,"url":null,"abstract":"While linear equalization schemes like zero forcing or minimum mean-square error achieve a near optimal uplink signal estimation performance in large-scale multi-user multiple-input multiple-output systems, the corresponding algorithms lean on centralized processing. To avoid disproportionate interconnect data rates due to the centralized signal estimation, performing a decentralized equalization can mitigate these effects. In this paper, we present a decentralized signal estimation architecture, which combines the ideas of existing decentralized architectures to (i) reduce the overall latency of the signal estimation and (ii) maintain a high data detection performance.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"10 1","pages":"1967-1971"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

While linear equalization schemes like zero forcing or minimum mean-square error achieve a near optimal uplink signal estimation performance in large-scale multi-user multiple-input multiple-output systems, the corresponding algorithms lean on centralized processing. To avoid disproportionate interconnect data rates due to the centralized signal estimation, performing a decentralized equalization can mitigate these effects. In this paper, we present a decentralized signal estimation architecture, which combines the ideas of existing decentralized architectures to (i) reduce the overall latency of the signal estimation and (ii) maintain a high data detection performance.
基于二值多步合成的分散海量MIMO上行信号估计
在大规模多用户多输入多输出系统中,虽然零强迫或最小均方误差等线性均衡方案可以实现近乎最优的上行信号估计性能,但相应的算法依赖于集中处理。为了避免由于集中信号估计而导致的不相称的互连数据速率,执行分散均衡可以减轻这些影响。在本文中,我们提出了一种分散的信号估计架构,它结合了现有分散架构的思想,以(i)减少信号估计的总体延迟,(ii)保持高数据检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信