{"title":"Decentralized Massive MIMO Uplink Signal Estimation by Binary Multistep Synthesis","authors":"Pascal Seidel, S. Paul, Jochen Rust","doi":"10.1109/IEEECONF44664.2019.9048772","DOIUrl":null,"url":null,"abstract":"While linear equalization schemes like zero forcing or minimum mean-square error achieve a near optimal uplink signal estimation performance in large-scale multi-user multiple-input multiple-output systems, the corresponding algorithms lean on centralized processing. To avoid disproportionate interconnect data rates due to the centralized signal estimation, performing a decentralized equalization can mitigate these effects. In this paper, we present a decentralized signal estimation architecture, which combines the ideas of existing decentralized architectures to (i) reduce the overall latency of the signal estimation and (ii) maintain a high data detection performance.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"10 1","pages":"1967-1971"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
While linear equalization schemes like zero forcing or minimum mean-square error achieve a near optimal uplink signal estimation performance in large-scale multi-user multiple-input multiple-output systems, the corresponding algorithms lean on centralized processing. To avoid disproportionate interconnect data rates due to the centralized signal estimation, performing a decentralized equalization can mitigate these effects. In this paper, we present a decentralized signal estimation architecture, which combines the ideas of existing decentralized architectures to (i) reduce the overall latency of the signal estimation and (ii) maintain a high data detection performance.