71 holomorphic vertex operator algebras of central charge 24

IF 0.1 Q4 MATHEMATICS
C. Lam, Hiroki Shimakura
{"title":"71 holomorphic vertex operator algebras of central charge 24","authors":"C. Lam, Hiroki Shimakura","doi":"10.21915/BIMAS.2019105","DOIUrl":null,"url":null,"abstract":"In this article, we give a survey on the recent progress towards the classification of strongly regular holomorphic vertex operator algebras of central charge 24. In particular, we review the construction of the holomorphic vertex operator algebras that realize the 71 Lie algebras in Schellekens’ list. In addition, we discuss an open question if the Lie algebra structure of the weight one subspace will determine the isomorphism class of a holomorphic vertex operator algebra of central charge 24 uniquely.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"85 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/BIMAS.2019105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

In this article, we give a survey on the recent progress towards the classification of strongly regular holomorphic vertex operator algebras of central charge 24. In particular, we review the construction of the holomorphic vertex operator algebras that realize the 71 Lie algebras in Schellekens’ list. In addition, we discuss an open question if the Lie algebra structure of the weight one subspace will determine the isomorphism class of a holomorphic vertex operator algebra of central charge 24 uniquely.
中心电荷的全纯顶点算子代数
本文综述了中心电荷24的强正则全纯顶点算子代数分类的最新进展。特别地,我们回顾了实现Schellekens列表中的71个李代数的全纯顶点算子代数的构造。此外,我们讨论了权一子空间的李代数结构是否唯一地决定中心电荷24的全纯顶点算子代数的同构类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信